GAO XIMING, ZHONG XIAOXIONG, WANG WEIZHONGcom sh adva. 1990: SOURSE PARAMETER INVERSION BASED ON GEOIDAL DEFORMATION RESULTING FROM EARTHQUAKE DISLOCATION. Acta Seismologica Sinica, 12(2): 148-158.
Citation: GAO XIMING, ZHONG XIAOXIONG, WANG WEIZHONGcom sh adva. 1990: SOURSE PARAMETER INVERSION BASED ON GEOIDAL DEFORMATION RESULTING FROM EARTHQUAKE DISLOCATION. Acta Seismologica Sinica, 12(2): 148-158.

SOURSE PARAMETER INVERSION BASED ON GEOIDAL DEFORMATION RESULTING FROM EARTHQUAKE DISLOCATION

More Information
  • Published Date: September 01, 2011
  • In this paper we have discussed the deformation of reference system,i.e.,thegeoid,due to earthquake dislocation and have given some numerical results on changesof the geoidal height and the deflection of vertical and variations of the geoidal height with dip angles of the dislocation plane.In the presence of the geoida] deformation we have further presented a method treating inversion of source parameter of earthquake dislocation with data of apparent displacement and gravity change on the ground and applied it for determining sourse parameters and changes of geoidal height for the Tangshan earthquake.The results indicate that based on geodetic data inversion of source parameters of earthquake dislocation model is not only theoretically serious,but also practically significant.
  • [1] Heck, B. and Malzer, H., 1983. Determination of vertical recent crustal movements by loveping and gravity data. Tectonophysics, 97, 251——264.

    [2] Heck, B., 1954. Zur Bestimmung vertikaler rezenter Erdkrusten——bewegungen and zeitlicher Änderungen des Schwerefeldes aus wiederholten Schweremessungen and Nivellements. DGK,c302, 1——114.

    [3] Gao, X. M., 1985. Regeneralization of Bruns and Stokes formulas. Darmstadt, 1——11.

    [4] 高锡铭、王威中、钟晓雄,表面垂直位移和重力变化引起的大地水准面形变.地球物理学报(待刊).

    [5] Walsh, J. B. and Rice, J. R., 1979. Local changes in gravity resulting from deformation. J,Geophys. Res., 84, B1, 165——170.

    [6] 高锡铭、王威中,1987,局部形变地球表面的重力垂直位移梯度.地壳形变与地震,7, 1, 9——18,

    [7] Heiskanen, W, A. antl Moritz, H., 1967. Physical Geodesy, San Francisco and London.

    [8] Maruyama, T., 1964. Statical elastic dislocation in an infinite and semi——infinite medium. Ball.Earthq. Res. Inst. Tokyo——Univ., 42, 2, 289——368.

    [9] 陈运泰、黄立人、林邦慧、刘妙龙、王新华,1979.用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报,22,3,201 ——219,

    [10] 张祖胜,1984.利用大地测量资料反演地震震源参数的若干问题.地震学报,6,167——181,

    [11] 黄立人,1981,唐山地震水平位移的广义逆平差分析及其与经典平差结果的比较.地壳形变与地震,2,3,1——11.

    [12] 国家地震局地震研究所,1986.国家地震局全国重力重复测量资料汇编.

    [13] Savage, J. C 1984. Local gravity anomalies produced by dislocation sources. J. G. R., 89, B3,1945——1952.

    [1] Heck, B. and Malzer, H., 1983. Determination of vertical recent crustal movements by loveping and gravity data. Tectonophysics, 97, 251——264.

    [2] Heck, B., 1954. Zur Bestimmung vertikaler rezenter Erdkrusten——bewegungen and zeitlicher Änderungen des Schwerefeldes aus wiederholten Schweremessungen and Nivellements. DGK,c302, 1——114.

    [3] Gao, X. M., 1985. Regeneralization of Bruns and Stokes formulas. Darmstadt, 1——11.

    [4] 高锡铭、王威中、钟晓雄,表面垂直位移和重力变化引起的大地水准面形变.地球物理学报(待刊).

    [5] Walsh, J. B. and Rice, J. R., 1979. Local changes in gravity resulting from deformation. J,Geophys. Res., 84, B1, 165——170.

    [6] 高锡铭、王威中,1987,局部形变地球表面的重力垂直位移梯度.地壳形变与地震,7, 1, 9——18,

    [7] Heiskanen, W, A. antl Moritz, H., 1967. Physical Geodesy, San Francisco and London.

    [8] Maruyama, T., 1964. Statical elastic dislocation in an infinite and semi——infinite medium. Ball.Earthq. Res. Inst. Tokyo——Univ., 42, 2, 289——368.

    [9] 陈运泰、黄立人、林邦慧、刘妙龙、王新华,1979.用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报,22,3,201 ——219,

    [10] 张祖胜,1984.利用大地测量资料反演地震震源参数的若干问题.地震学报,6,167——181,

    [11] 黄立人,1981,唐山地震水平位移的广义逆平差分析及其与经典平差结果的比较.地壳形变与地震,2,3,1——11.

    [12] 国家地震局地震研究所,1986.国家地震局全国重力重复测量资料汇编.

    [13] Savage, J. C 1984. Local gravity anomalies produced by dislocation sources. J. G. R., 89, B3,1945——1952.
  • Related Articles

Catalog

    Article views (1311) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return