Xie Meng yu, Shi Bao ping. 2016: The periodic and aperiodic slip during earthquake faulting and aseismic faulting slip: 1D fault model analysis. Acta Seismologica Sinica, 38(4): 590-608.
Citation: Xie Meng yu, Shi Bao ping. 2016: The periodic and aperiodic slip during earthquake faulting and aseismic faulting slip: 1D fault model analysis. Acta Seismologica Sinica, 38(4): 590-608.

The periodic and aperiodic slip during earthquake faulting and aseismic faulting slip: 1D fault model analysis

More Information
  • Received Date: March 14, 2016
  • Accepted Date: May 26, 2016
  • Published Date: June 30, 2016
  • With a simple 1D spring-slide block model governed by Dieterich-Ruina law, this study derived an approximate analytical solution used to calculate the earthquake recurrence time and compared its approximate solution with previous results given by Barbot et al. The comparison between approximate solutions and the results by numerical simulation also demonstrated that current solution gives us a better approximation compared with previous result. Furthermore, it should be emphasized that, because only 40% to 80% of earthquake recurrence time belongs to interseismic stage, therefore, the duration of postseismic and nucleation/preseismic stage could not be ignored in the whole faulting process. Specifically, the time scale of earthquake recurrence in current earthquake recurrence model is not only related to the characteristic dimension of fault, the effective normal stress and remote loading rate, but also strongly depends on the values of the frictional parameters in the Dieterich-Ruina law and the critical distance obtained from laboratory. It is necessary to point out that, if all parameters we used represent a real situation in the earth, the approximate solution proposed in the present paper can give us an excellent estimation of earthquake recurrence time for a given tectonic region, of which relative error is less than 5%. Moreover, numerical simulation and theory are also used to study the mechanical mechanisms which cause the periodic and aperiodic evolution of the earthquake faulting and aseismic faulting slip. In addition, this paper also discussed the limitations and advantages of using 1D spring-slide block model to describe the elasticity in modeling evolution of fault. And it is found that applying shear stress loading during evolution of earthquake faulting can cause aperiodic evolution. Specially, applying shear stress loading at late nucleation/preseismic stage or early postseismic stage will lead to aseismic faulting slip.
  • 解孟雨, 史保平. 2016. 数值模拟静态应力扰动下的断层失稳: 结果分析兼与Dieterich模型和Coulomb模型的对比[J]. 地球物理学报, 59(2): 593-605. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602018.htm

    Xie M Y, Shi B P. 2016. Numerical simulation of fault instability due to an arbitrary static stress perturbation: A comparison with the Dieterich model and Coulomb failure model[J]. Chinese Journal of Geophysics, 59(2): 593-605 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201602018.htm
    仲秋, 史保平. 2012. 1976年MS7.8唐山地震余震序列持续时间及对地震危险性分析的意义[J]. 地震学报, 34(4): 494-508. http://www.dzxb.org/Magazine/Show?id=28774

    Zhong Q, Shi B P. 2012. Aftershock time duration of the 1976 MS7.8 Tangshan earthquake and implication for seismic hazard[J]. Acta Seismologica Sinica, 34(4): 494-508 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28774
    Avouac J-P. 2015. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle[J]. Annu Rev Earth Planet Sci, 43(1): 233-271. doi: 10.1146/annurev-earth-060614-105302
    Barbot S, Lapusta N, Avouac J-P. 2012. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle[J]. Science, 336(6082): 707-710. doi: 10.1126/science.1218796
    Beeler N M, Lockner D A. 2003. Why earthquakes correlate weakly with the solid earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence[J]. J Geophys Res, 108(B8): 2391. doi: 10.1029/2001JB001518
    Beeler N M. 2004. Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation[J]. Pure Appl Geophys, 161(9/10): 1853-1876. http://cn.bing.com/academic/profile?id=2008445517&encoded=0&v=paper_preview&mkt=zh-cn
    Belardinelli M E, Bizzarri A, Cocco M. 2003. Earthquake triggering by static and dynamic stress changes[J]. J Geophys Res, 108(B3): 2135. http://cn.bing.com/academic/profile?id=2085003380&encoded=0&v=paper_preview&mkt=zh-cn
    Bhattacharya P, Rubin A M. 2014. Frictional response to velocity steps and 1-D fault nucleation under a state evolution law with stressing-rate dependence[J]. J Geophys Res, 119(3): 2272-2304. doi: 10.1002/2013JB010671
    Byerlee J. 1970. The mechanics of stick-slip[J]. Tectonophysics, 9(5): 475-486. doi: 10.1016/0040-1951(70)90059-4
    Byerlee J. 1978. Friction of rocks[J]. Pure Appl Geophys, 116(4/5): 615-626. http://cn.bing.com/academic/profile?id=1977156689&encoded=0&v=paper_preview&mkt=zh-cn
    Dieterich J H. 1978. Time-dependent friction and the mechanics of stick-slip[J]. Pure Appl Geophys, 116(4/5): 790-806. http://cn.bing.com/academic/profile?id=2128375302&encoded=0&v=paper_preview&mkt=zh-cn
    Dieterich J H. 1979. Modelling of rock friction: 1. Experimental results and constitutive equations[J]. J Geophys Res, 84(B5): 2161-2168. http://cn.bing.com/academic/profile?id=2019935798&encoded=0&v=paper_preview&mkt=zh-cn
    Dieterich J H. 1981. Constitutive properties of faults with simulated gouge[C]//Mechanical Behavior of Crustal Rocks: The Handin Volume. Washington DC: American Geophysical Union: 103-120.
    Dieterich J H. 1992. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics, 211(1/2/3/4): 115-134. http://cn.bing.com/academic/profile?id=2093509339&encoded=0&v=paper_preview&mkt=zh-cn
    Dieterich J H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res, 99(B2): 2601-2618. doi: 10.1029/93JB02581
    Gomberg J, Blanpied M L, Beeler N M. 1997. Transient triggering of near and distant earthquakes[J]. Bull Seismol Soc Am, 87(2): 294-309. http://cn.bing.com/academic/profile?id=1894687224&encoded=0&v=paper_preview&mkt=zh-cn
    Gomberg J, Beeler N M, Blanpied M L, Bodin P.1998. Earthquake triggering by transient and static deformation[J]. J Geophys Res, 103(B10): 24411-24426. doi: 10.1029/98JB01125
    Gu J C, Rice J R, Ruina A L, Tse S T.1984. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J]. J Mech Phys Solids, 32(3): 167-196. doi: 10.1016/0022-5096(84)90007-3
    Harris R A, Simpson R W. 1998. Suppression of large earthquakes by stress shadows: A comparison of Coulomb and rate-and-state failure[J]. J Geophys Res, 1032(B10): 24439-24451. http://cn.bing.com/academic/profile?id=2002797922&encoded=0&v=paper_preview&mkt=zh-cn
    Kame N, Fujita S, Nakatani M, Kusakabe T. 2013a. Effects of a revised rate- and state-dependent friction law on aftershock triggering model[J]. Tectonophysics, 600: 187-195. doi: 10.1016/j.tecto.2012.11.028
    Kame N, Fujita S, Nakatani M, Kusakabe T.2013b. Earthquake cycle simulation with a revised rate- and state-dependent friction law[J]. Tectonophysics, 600 : 196-204. doi: 10.1016/j.tecto.2012.11.029
    Kaneko Y, Lapusta N. 2008. Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates[J]. J Geophys Res, 113(B12): B12312. doi: 10.1029/2007JB005154
    Kaneko Y, Avouac J-P, Lapusta N. 2010. Towards inferring earthquake patterns from geodetic observations of interseismic coupling[J]. Nat Geosci, 3(5): 363-369. doi: 10.1038/ngeo843
    Liu M, Stein S, Wang H. 2012. 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries[J]. Lithosphere, 22(2): 33-44. http://cn.bing.com/academic/profile?id=2317751205&encoded=0&v=paper_preview&mkt=zh-cn
    Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Annu Rev Earth Planet Sci, 26(1): 643-696. doi: 10.1146/annurev.earth.26.1.643
    Nagata K, Nakatani M, Yoshida S. 2012. A revised rate- and state-dependent friction law obtained by constraining constitutive and evolution laws separately with laboratory data[J]. J Geophys Res, 117(B2): B02314. http://cn.bing.com/academic/profile?id=2025142380&encoded=0&v=paper_preview&mkt=zh-cn
    Noda H, Lapusta N. 2013. Stable creeping fault segments can become destructive as a result of dynamic weakening[J]. Nature, 493(7433): 518-521. doi: 10.1038/nature11703
    Parsons T. 2005. A hypothesis for delayed dynamic earthquake triggering[J]. Geophys Res Lett, 32(4): L04302. http://cn.bing.com/academic/profile?id=1992339695&encoded=0&v=paper_preview&mkt=zh-cn
    Perfettini H, Schmittbuhl J, Cochard A. 2003. Shear and normal load perturbations on a two-dimensional continuous fault: 1. Static triggering[J]. J Geophys Res, 108(B9): 2408. http://cn.bing.com/academic/profile?id=2008664307&encoded=0&v=paper_preview&mkt=zh-cn
    Perfettini H, Avouac J-P. 2004a. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan[J]. J Geophys Res, 109(B2): B02304. http://cn.bing.com/academic/profile?id=2065169229&encoded=0&v=paper_preview&mkt=zh-cn
    Perfettini H, Avouac J-P. 2004b. Stress transfer and strain rate variations during the seismic cycle[J]. J Geophys Res, 109(6): 117-132. http://cn.bing.com/academic/profile?id=2059866814&encoded=0&v=paper_preview&mkt=zh-cn
    Perfettini H, Avouac J-P, Tavera H, Kositsky A, Nocquet J-M, Bondoux F, Chlieh M, Sladen A, Audin L, Farber D L, Soler P. 2010. Seismic and aseismic slip on the Central Peru megathrust[J]. Nature, 465(7294): 78-81. doi: 10.1038/nature09062
    Ranjith K, Rice J R. 1999. Stability of quasi-static slip in a single degree of freedom elastic system with rate and state dependent friction[J]. J Mech Phys Sol, 47(6): 1207-1218. doi: 10.1016/S0022-5096(98)00113-6
    Rice J R. 1983. Constitutive relations for fault slip and earthquake instabilities[J]. Pure Appl Geophys, 121(3): 443-475. doi: 10.1007/BF02590151
    Rubin A M, Ampuero J-P. 2005. Earthquake nucleation on (aging) rate and state faults[J]. J Geophys Res, 110(B11): B11312. http://cn.bing.com/academic/profile?id=2025058161&encoded=0&v=paper_preview&mkt=zh-cn
    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res, 88(B12): 10359-10370. doi: 10.1029/JB088iB12p10359
    Ryder I. 2006. Elastic and Viscoelastic Modelling of Postseismic Motion and Fault Structures[D]. Oxford: Oxford University: 12. doi: 10.1007/978-3-319-32580-4_1/fulltext.html
    Scholz C H. 1998. Earthquakes and friction laws[J]. Nature, 391(6662): 37-42. doi: 10.1038/34097
    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. New York: Cambridge University Press: 85, 266-267.
    Segall P. 2010. Earthquake and Volcano Deformation[M]. Princeton: Princeton University Press: 332, 338-339, 349-350.
    Shimazaki K, Nakata T. 1980. Time-predictable recurrence model for large earthquake[J]. Geophys Res Lett, 7(4): 279-282. doi: 10.1029/GL007i004p00279
    Shirzaei M, Burgmann R, Uchida N, Pollitz F, Matsuzawa T. 2014. Seismic versus aseismic slip: Probing mechanical properties of the northeast Japan subduction zone[J]. Earth Planet Sci Lett, 406: 7-13. doi: 10.1016/j.epsl.2014.08.035
    Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature, 402(6762): 605-609. doi: 10.1038/45144
    Stein S, Wysession M. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Malden: Blackwell Publishing: 215-217.
    Stein S, Liu M. 2009. Long aftershock sequences within continents and implications for earthquake hazard assessment[J]. Nature, 462(7269): 87-89. doi: 10.1038/nature08502
    Uchida N, Iinuma T, Nadeau R M, Burgmann R, Hino R. 2016. Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan[J]. Science, 351(6272): 488-492. doi: 10.1126/science.aad3108
  • Related Articles

  • Cited by

    Periodical cited type(4)

    1. 任梦依,刘哲. 青藏高原东北缘地震活动性广义帕累托模型的全域敏感性分析. 地震学报. 2022(06): 1035-1048 . 本站查看
    2. 叶友清,苏金蓉,易桂喜,杨贤和. 利用震级均值特性建立有上限震级概率模型对2017年九寨沟7.0级地震的余震概率预测. 地球物理学进展. 2019(02): 489-499 .
    3. 张锟,任鲁川,田建伟,刘哲. 基于广义极值理论的潜在地震海啸源震级上限及强震重现水平的估计——以琉球海沟俯冲带为例. 中国地震. 2016(04): 702-709 .
    4. 任雪梅,高孟潭,张纳莉. 基于MGR模型的我国大陆地区各地震带1970年以来震级-频度关系和震级上限. 中国地震. 2012(03): 320-327 .

    Other cited types(7)

Catalog

    Article views (422) PDF downloads (47) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return