Citation: | An Zhenwen, Wang Linying, Zhu Chuanzhencom sh advance. 1989: THE CHARACTERISTICS OF FRACTAL DIMENSION IN THE TEMPORAL-SPATIAL DISTRIBUTION OF EARTHQUAKES BEFORE AND AFTER THE OCCURRENCE OF A LARGE EARTHQUAKE. Acta Seismologica Sinica, 11(3): 251-258. |
[1] Sander, L. M., 1986. Fractal growth proceses, Nature, 322, 789——793.
[2] Mandelbrot, B. B., 1977. Fractals, Form, Chance and Dimension, W, H. Freeman, San Francisco, CA. [3] Ito, K., 1980. Periodicity and Chaos in great earthquake occurrence. J. Geophys. Res., 85, 1399——1408. [4] Ito, K., Oono, Y. Yamazaki, H., Hirakama, K., 1980. Chaos behavior in great earthquakes——Coupled re——laxation oscillator model, billiard model and electronic cirucit model. Journal of the Physical Society ofJapan, 49, 43——52. [5] Aviles, C. A., and Scholz, C. H., 1987. Fractal analysis applied to characteristic segments of the San And——teas fault. J. Geophys, Res., 92, 331——344. [6] Okubo, P. G. and Aki, K., 1987. Fractal geometry in the San Andreas fault system. J. Geophys. Rer, 92,345——355. [7] Lovejoy, S,Schertzer, D.&Ladoy, P., 1986. Fractal characterization of inhomogeneous geophysical measur——ing networks. Nature, 319, 43——44. [8] 洪时中、洪时明,1987.分数维及其在地震科学中的应用前景.四川地震,1:39——46, [9] 李海华,1985.南北地震带北段强震活动的有序性和层次性.四川地震,2: 1——9, [10] Batty, M., 1985. Fractals——geometry between d}rnensions, New Scientist, 105, 32——36. [11] 郝柏林,1986.分形和分维,科学杂志,38: 9——17. [12] 于渌、郝柏林,1980.相变和临界现象(III).物理,9,545——549.
[1] Sander, L. M., 1986. Fractal growth proceses, Nature, 322, 789——793.
[2] Mandelbrot, B. B., 1977. Fractals, Form, Chance and Dimension, W, H. Freeman, San Francisco, CA. [3] Ito, K., 1980. Periodicity and Chaos in great earthquake occurrence. J. Geophys. Res., 85, 1399——1408. [4] Ito, K., Oono, Y. Yamazaki, H., Hirakama, K., 1980. Chaos behavior in great earthquakes——Coupled re——laxation oscillator model, billiard model and electronic cirucit model. Journal of the Physical Society ofJapan, 49, 43——52. [5] Aviles, C. A., and Scholz, C. H., 1987. Fractal analysis applied to characteristic segments of the San And——teas fault. J. Geophys, Res., 92, 331——344. [6] Okubo, P. G. and Aki, K., 1987. Fractal geometry in the San Andreas fault system. J. Geophys. Rer, 92,345——355. [7] Lovejoy, S,Schertzer, D.&Ladoy, P., 1986. Fractal characterization of inhomogeneous geophysical measur——ing networks. Nature, 319, 43——44. [8] 洪时中、洪时明,1987.分数维及其在地震科学中的应用前景.四川地震,1:39——46, [9] 李海华,1985.南北地震带北段强震活动的有序性和层次性.四川地震,2: 1——9, [10] Batty, M., 1985. Fractals——geometry between d}rnensions, New Scientist, 105, 32——36. [11] 郝柏林,1986.分形和分维,科学杂志,38: 9——17. [12] 于渌、郝柏林,1980.相变和临界现象(III).物理,9,545——549. |
Li Qiong, Fu Hong, Hu Xiaojing, Du jiayun, Yang Li. 2024: Statistical characteristics analysis on the relationship between radon anomalies and earthquakes in Yunnan region. Acta Seismologica Sinica, 46(2): 340-352. DOI: 10.11939/jass.20230130 | |
Mao Shirong, Shi Shuiping, Yu Zhuangji, Su Meiyan, Li Sha, He Jiaxing, Fu Heng, Zhang Qing. 2023: A seismic data denoising method based on complete ensemble empirical mode decomposition with adaptive noise and Hurst exponent. Acta Seismologica Sinica, 45(2): 258-270. DOI: 10.11939/jass.20210165 | |
Zhang Jiangwei, Li Xiaojun, Chi Mingjie, Liu Chen. 2017: Type division of soil slopes under seismic action. Acta Seismologica Sinica, 39(2): 286-295. DOI: 10.11939/jass.2017.02.011 | |
Liu Qinghua, Lu Laiyu, He Zhengqin, Hu Gang, Wang Kaiming, Gong Yan. 2016: Inversion of S-wave velocity structure near the surface by spatial autocorrelation technique of microtremors. Acta Seismologica Sinica, 38(1): 86-95. DOI: 10.11939/jass.2016.01.008 | |