Yang Zhigao, Zhang Xuemei. 2018: Ambient noise Rayleigh wave tomography in the northeastern Tibetan Plateau. Acta Seismologica Sinica, 40(1): 1-12. DOI: 10.11939/jass.20170050
Citation: Yang Zhigao, Zhang Xuemei. 2018: Ambient noise Rayleigh wave tomography in the northeastern Tibetan Plateau. Acta Seismologica Sinica, 40(1): 1-12. DOI: 10.11939/jass.20170050

Ambient noise Rayleigh wave tomography in the northeastern Tibetan Plateau

More Information
  • Received Date: February 11, 2017
  • Revised Date: September 14, 2017
  • Available Online: February 05, 2018
  • Published Date: December 31, 2017
  • Two years of seismic ambient noise observed by three provincial networks are used to estimate 2D Rayleigh wave group velocity and 3D shear wave velocity structure of northeastern Tibetan Plateau. Compared with traditional surface wave tomography, ambient noise tomography may provide refined structure of the crust and uppermost mantle. Low group velocities of 8 s and 10 s periods coincide with sedimentary layer and crystalline basement, while the high velocity zones denote igneous cores of the major mountain ranges. Qilian mountain and Qinling mountain show high velocity, but Qaidam basin, Hexi corridor of Gansu Province and western Ordos block show low velocity. 15 s and 20 s period group velocities represent the structure of middle crust, and the high velocity zones expand to north and east in 15 s period group velocity map. Whereas in the 20 s period group velocity map most areas show low velocity anomaly, which may correspond to the low velocity crustal layer revealed by previous studies. 30 s and 40 s period group velocity maps represent the velocity structure around the depth of Moho. The velocity maps show low velocity zones in Tibetan Plateau and high velocity towards the north and the east, suggesting that the crust is thick in Tibetan Plateau and thinned in the northern and the eastern studied areas. In addition, 3D shear velocity structure shows low velocity zone beneath Qilian orogen and Garze terrain. The two zones are connected by a lower crustal low velocity zone to the east of Qaidam basin, which may be a channel of northward material movement.
  • 陈九辉, 刘启元, 李顺成, 郭飙, 赖院根. 2005. 青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构[J]. 地球物理学报, 48(2): 333-342.

    Chen J H, Liu Q Y, Li S C, Guo B, Lai Y G. 2005. Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos Block[J]. Chinese Journal of Geophysics, 48(2): 333-342 (in Chinese).
    郭桂红, 张智, 程建武, 董治平, 闫建萍, 马亚维. 2015. 青藏高原东北缘地壳各向异性的构造含义[J]. 地球物理学报, 58(11): 4092-4105.

    Guo G H, Zhang Z, Cheng J W, Dong Z P, Yan J P, Ma Y W. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication[J]. Chinese Journal of Geophysics, 58(11): 4092-4105 (in Chinese).
    嘉世旭, 张先康. 2008. 青藏高原东北缘深地震测深震相研究与地壳细结构[J]. 地球物理学报, 51(5): 1431-1443.

    Jia S X, Zhang X K. 2008. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 51(5): 1431-1443 (in Chinese).
    李永华, 吴庆举, 安张辉, 田小波, 曾融生, 张瑞青, 李红光. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义[J]. 地球物理学报, 49(5): 1359-1368.

    Li Y H, Wu Q J, An Z H, Tian X B, Zeng R S, Zhang R Q, Li H G. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions[J]. Chinese Journal of Geophysics, 49(5): 1359-1368 (in Chinese).
    刘启民, 赵俊猛, 卢芳, 刘宏兵. 2014. 用接收函数方法反演青藏高原东北缘地壳结构[J]. 中国科学: 地球科学, 44(4): 668-679.
    Liu Q M, Zhao J M, Lu F, Liu H B. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion[J]. Science China Earth Sciences, 57(4): 741-750.
    王琼, 高原, 石玉涛, 吴晶. 2013. 青藏高原东北缘上地幔地震各向异性: 来自SKS、PKS和SKKS震相分裂的证据[J]. 地球物理学报, 56(3): 892-905.

    Wang Q, Gao Y, Shi Y T, Wu J. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS[J]. Chinese Journal of Geophysics, 56(3): 892-905 (in Chinese).
    杨志高, 张雪梅. 2016. 2016年门源MS6.4地震震区地壳厚度及波速比研究[J]. 地震研究, 39(4): 566-573.

    Yang Z G, Zhang X M. 2016. Study on crustal thickness and velocity ratio near Menyuan MS6.4 earthquake zone[J]. Journal of Seismological Research, 39(4): 566-573 (in Chinese).
    余大新, 李永华, 吴庆举, 潘佳铁, 张风雪, 何静. 2014. 利用Rayleigh波相速度和群速度联合反演青藏高原东北缘S波速度结构[J]. 地球物理学报, 57(3): 800-811.

    Yu D X, Li Y H, Wu Q J, Pan J T, Zhang F X, He J. 2014. S-wave velocity structure of the Northeastern Tibetan Plateau from joint inversion of Rayleigh wave phase and group velocities[J]. Chinese Journal of Geophysics, 57(3): 800-811 (in Chinese).
    赵金仁, 李松林, 张先康, 杨卓欣, 张成科, 刘宝峰, 张建狮, 潘素珍. 2005. 青藏高原东北缘莫霍界面的三维空间构造特征[J]. 地球物理学报, 48(1): 78-85.

    Zhao J R, Li S L, Zhang X K, Yang Z X, Zhang C K, Liu B F, Zhang J S, Pan S Z. 2005. Three dimensional Moho geometry beneath the Northeast edge of the Qinghai-Tibet plateau[J]. Chinese Journal of Geophysics, 48(1): 78-85 (in Chinese).
    Bao X W, Song X D, Xu M J, Wang L S, Sun X X, Mi N, Yu D Y, Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett, 369-370: 129-137.
    Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int, 169(3): 1239-1260.
    Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706.
    Fang H J, Yao H J, Zhang H J, Huang Y C, van der Hilst R D. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application[J]. Geophys J Int, 201(3): 1251-1263.
    Herrmann R B, Ammon C J. 2002. Computer programs in seismology[EB/OL]. Version 3.15. [2016-12-12]. http://www.eas.slu.edu/eqc/eqccps.html.
    Jiang C X, Yang Y J, Zheng Y. Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography[J]. Earth Planet Sci Lett, 406: 81-92.
    Laske G, Ma Z T, Masters G, Pasyanos M. 2015. Crust1.0: A new global crustal model at 1×1 degrees[EB/OL]. [2016-12-12]. http://igppweb.ucsd.edu/~gabi/crust1.html.
    Li H Y, Shen Y, Huang Z X, Li X F, Gong M, Shi D N, Sandvol E, Li A B. 2014. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. J Geophys Res, 119(3): 1954-1970.
    Li L, Li A B, Shen Y, Sandvol E A, Shi D N, Li H Y, Li X F. 2013. Shear wave structure in the northeastern Tibetan Plateau from Rayleigh wave tomography[J]. J Geophys Res, 118(8): 4170-4183.
    Li X F, Santosh M, Cheng S H, Xu X M, Zhong W X. 2015. Crustal structure and composition beneath the northeastern Tibetan plateau from receiver function analysis[J]. Phys Earth Planet Inter, 249: 51-58.
    Pan S Z, Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis[J]. Earth Planet Sci Lett, 303(3/4): 291-298.
    Rawlinson N, Sambridge M. 2004a. Multiple reflection and transmission phases in complex layered media using a multistage fast marching method[J]. Geophysics, 69(5): 1338-1350.
    Rawlinson N, Sambridge M. 2004b. Wave front evolution in strongly heterogeneous layered media using the fast marching method[J]. Geophys J Int, 156(3): 631-647.
    Rawlinson N, Sambridge M. 2005. The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media[J]. Explor Geophys, 36(4): 341-350.
    Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
    Wessel P, Smith W H F, Scharroo R, Luis J, Wobbe F. 2013. Generic Mapping Tools: Improved version released[J]. Eos Trans Am Geophys Union, 94(45): 409-410.
    Yang Y J, Ritzwoller M H, Levshin A L, Shapiro N M. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophys J Int, 168(1): 259-274.
    Zhang P Z, Shen Z K, Wang M, Gan W J, Bürgmann R, Molnar P, Wang Q, Niu Z J, Sun J Z, Wu J C, Sun H R, You X Z. 2005. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812.
    Zheng D, Li H Y, Shen Y, Tan J, Ouyang L B, Li X F. 2016. Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions[J]. Geophys J Int, 204(1): 583-590.
    Zhu L P, Helmberger D V. 1998. Moho offset across the northern margin of the Tibetan Plateau[J]. Science, 281(5380): 1170-1172.
  • Cited by

    Periodical cited type(6)

    1. 王雅如,王昀,江勇勇. 基于改进Unet的地震勘探工区建筑物分割方法研究. 现代电子技术. 2025(03): 135-140 .
    2. 齐文文,许冲,乔月霞. 基于谷歌地球引擎和Sentinel-2时序数据的海地多云地区地震滑坡识别. 地震学报. 2024(04): 633-648 . 本站查看
    3. 韩军良,韩留生,穆豪祥,张至一,郭宇晨,刘晓亚. 面向对象的土地荒漠化信息提取研究. 测绘科学. 2023(04): 149-160 .
    4. 罗嘉琦,帅向华,李继赓. 基于深度学习的倾斜摄影建筑物表面损毁信息提取. 中国地震. 2023(02): 271-281 .
    5. 雷雅婷,沈占锋,许泽宇,王浩宇,李硕,焦淑慧. 基于D-LinkNet的2014年云南鲁甸M_S6.5地震建筑物损毁与重建评估. 地震研究. 2022(04): 608-616 .
    6. 杜浩国,张方浩,卢永坤,林旭川,邓树荣,曹彦波. 基于多源遥感影像的2021年云南漾濞M_S6.4地震灾区建筑物信息识别与震害分析. 地震研究. 2021(03): 490-498 .

    Other cited types(4)

Catalog

    Article views (2562) PDF downloads (173) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return