Xie Hui, Ma Heqing, Ma Xiaojun, Zhang Nan, Luo Hengzhi, Li Qingmei. 2018: Determination criteria of repeating earthquakes based on spectral element modeling. Acta Seismologica Sinica, 40(5): 609-619. DOI: 10.11939/jass.20170162
Citation: Xie Hui, Ma Heqing, Ma Xiaojun, Zhang Nan, Luo Hengzhi, Li Qingmei. 2018: Determination criteria of repeating earthquakes based on spectral element modeling. Acta Seismologica Sinica, 40(5): 609-619. DOI: 10.11939/jass.20170162

Determination criteria of repeating earthquakes based on spectral element modeling

More Information
  • Received Date: August 09, 2017
  • Revised Date: January 01, 2018
  • Accepted Date: January 01, 2018
  • Available Online: October 10, 2018
  • Published Date: August 31, 2018
  • Taking Ningxia regional seismic network for an example, we discussed the problems or difficulties in detecting repeating earthquakes via the waveform cross-correlation method and provided the corresponding solutions. We first created statistical models of 3D volumetric heterogeneities and then incorporated them into spectral element method to simulate 3D seismic wave propagation, so investigate the spatial distribution of the cross-correlation coefficients between earthquake pairs observed by different seismic stations, we found strong impacts of the volumetric heterogeneities and focal mechanism solution on the cross-correlation coefficients. The results show that the waveform cross-correlation method is more reliable and therefore practically useful in identify repeating earthquakes than the earthquake relocation method for the Ningxia regional seismic network. The cross-correlation coefficients are affected by the intensity of 3D heterogeneities near the hypocenter and the amplitude ratio of direct waves to coda waves. Given the same distance between two earthquakes, the stronger heterogeneities near earthquake source or stronger amplitude direct waves will result in higher waveform correlation coefficients. Thus, a higher threshold of cross-correlation coefficient is needed to reliably detecting repeating earthquakes. In summary, based on the data of Ningxia regional seismic network with an average station spacing of 30−50 km, choosing a proper threshold value of cross-correlation coefficient by only taking the time window of coda waves or data with weak direct P-waves, waveform cross-correlation method could reliably identify repeating earthquakes with a magnitude range ofML1.0−3.0, thus providing basis for the surveillance of repeating earthquakes.
  • 金春华,何秋菊,蔡新华,田小惠. 2015a. 宁夏地区地壳新速度模型在地震定位中的应用[J]. 地震,35(2):51–60 doi: 10.3969/j.issn.1000-3274.2015.02.006
    Jin C H,He Q J,Cai X H,Tian X H. 2015a. Application of a new crustal velocity model in earthquake location in Ningxia[J]. Earthquake,35(2):51–60 (in Chinese)
    金春华,田小惠,蔡新华,何秋菊. 2015b. MSDP软件定位方法应用对比[J]. 防灾减灾学报,31(1):63–70
    Jin C H,Tian X H,Cai X H,He Q J. 2015b. Several location methods and their application in MSDP[J]. Journal of Disaster Prevention and Reduction,31(1):63–70 (in Chinese)
    李乐,陈棋福,钮凤林,何家斌,付虹. 2013. 基于重复微震的小江断裂带深部滑动速率研究[J]. 地球物理学报,56(10):3373–3384 doi: 10.6038/cjg20131013
    Li L,Chen Q F,Niu F L,He J B,Fu H. 2013. Estimates of deep slip rate along the Xiaojiang fault with repeating microearthquake data[J]. Chinese Journal of Geophysics,56(10):3373–3384 (in Chinese)
    李乐,陈棋福,钮凤林,苏金蓉. 2015. 鲜水河断裂带南段深部变形的重复地震研究[J]. 地球物理学报,58(11):4138–4148
    Li L,Chen Q F,Niu F L,Su J R. 2015. Quantitative study of the deep deformation along the southern segment of the Xianshuihe fault zone using repeating microearthquakes[J]. Chinese Journal of Geophysics,58(11):4138–4148 (in Chinese)
    周龙泉,刘桂萍,马宏生,华卫. 2007. 利用重复地震观测地壳介质变化[J]. 地震,27(3):1–9 doi: 10.3969/j.issn.0253-4975.2007.03.001
    Zhou L Q,Liu G P,Ma H S,Hua W. 2007. Monitoring crustal media variation by using repeating earthquakes[J]. Earthquake,27(3):1–9 (in Chinese)
    Baisch S,Ceranna L,Harjes H P. 2008. Earthquake cluster:What can we learn from waveform similarity?[J]. Bull Seismol Soc Am,98(6):2806–2814 doi: 10.1785/0120080018
    Capon J. 1974. Characterization of crust and upper mantle structure under LASA as a random medium[J]. Bull Seismol Soc Am,64(1):235–266
    Chen T,Lapusta N. 2009. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model[J]. J Geophys Res,114(B1):B01311
    Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet Int,25(4):297–356 doi: 10.1016/0031-9201(81)90046-7
    Geller R J,Mueller C S. 1980. Four similar earthquakes in central California[J]. Geophys Res Lett,7(10):821–824 doi: 10.1029/GL007i010p00821
    Gutenberg B,Richter C F. 1994. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188
    Igarashi T,Matsuzawa T,Hasegawa A. 2003. Repeating earthquakes and interplateaseismic slip in the northeastern Japan subduction zone[J]. J Geophys Res,108(B5):2249
    Kato A,Obara K,Igarashi T,Tsuruoka H,Nakagawa S,Hirata N. 2012. Propagation of slow slip leading up to the 2011 MW9.0 Tohoku-Oki earthquake[J]. Science,335(6069):705–708
    Komatitsch D,Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seismol Soci Am,88(2):368–392
    Komatitsch D,Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int,139(3):806–822
    Nadeau R M,McEvilly T V. 1999. Fault slip rates at depth from recurrence intervals of repeating microearthquakes[J]. Science,285(5428):718–721 doi: 10.1126/science.285.5428.718
    Pacheco K,Nishimura T,Nakahara H. 2017. Seismic velocity changes of P and S waves associated with the 2011 Tohoku-Oki earthquake (MW9.0) as inferred from analyses of repeating earthquakes[J]. Geophys J Int,209(1):517–533
    Peng Z G,Ben-Zion Y. 2006. Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anatolian fault and strong ground motion[J]. Pure Appl Geophys,163(2):567–600
    Rubinstein J L,Uchida N,Beroza G C. 2007. Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake[J]. J Geophys Res,112(B5):B05315 doi: 10.1029/2006JB004440
    Sams M S,Neep J P,Worthington M H,King M S. 1997. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks[J]. Geophysics,62(5):1456–1464 doi: 10.1190/1.1444249
    Sato H, Fehler M C, Maeda T. 2012. Seismic Wave Propagation and Scattering in the Heterogeneous Earth[M]. 2nd ed. Berlin: Springer: 1101–1112.
    Schaff D P,Beroza G C. 2004. Coseismic and postseismic velocity changes measured by repeating earthquakes[J]. J Geophys Res,109(B10):B10302 doi: 10.1029/2004JB003011
    Wu R S,Aki K. 1985. Scattering characteristics of elastic waves by an elastic heterogeneity[J]. Geophysics,50(4):582–595 doi: 10.1190/1.1441934
    Xie Z,Komatitsch D,Martin R,Matzen R. 2014. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML[J]. Geophys J Int,198(3):1714–1747 doi: 10.1093/gji/ggu219
    Yoshimoto K,Sato H,Ohtake M. 1997. Short-wavelength crustal heterogeneities in the Nikko area,Central Japan,revealed from the three-component seismogram envelope analysis[J]. Phys Earth Planet Int,104(1/2/3):63–73
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 李红, 邓志辉, 邢成起, 严兴, 马晓静, 姜辉. 人工地震目录研究进展. 地球物理学进展. 2015(05): 1995-2006 .

    Other cited types(3)

Catalog

    Article views (1075) PDF downloads (57) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return