Wang Zhenshan, Wei Dongping, Xu Jiajing, Wang Shaopo. 2019: Effects of the strike-slip fault on the thermal structure and mantle flow of the mid-ocean ridge and the interpretation to RRF triple junctions at the southern Pacific boundary. Acta Seismologica Sinica, 41(4): 459-471. DOI: 10.11939/jass.20180009
Citation: Wang Zhenshan, Wei Dongping, Xu Jiajing, Wang Shaopo. 2019: Effects of the strike-slip fault on the thermal structure and mantle flow of the mid-ocean ridge and the interpretation to RRF triple junctions at the southern Pacific boundary. Acta Seismologica Sinica, 41(4): 459-471. DOI: 10.11939/jass.20180009

Effects of the strike-slip fault on the thermal structure and mantle flow of the mid-ocean ridge and the interpretation to RRF triple junctions at the southern Pacific boundary

More Information
  • Received Date: March 07, 2018
  • Revised Date: March 21, 2019
  • Available Online: July 02, 2019
  • Published Date: June 30, 2019
  • Triple junction provides a natural place for studying the interaction of plates. In this paper, we chose two ridge-ridge-fault (RRF) triple junctions with different relative plate velocities at the southern boundary of the Pacific Plate, namely, the Macquarie triple junction and the South Pacific triple junction. We studied the effects of relative plate velocity of the strike-slip fault on the mantle flow and temperature structure of the RRF triple junction by numerical simulation method. We can conclude the following results: ① The relative plate velocity of the strike-slip fault of RRF triple junctions at the southern boundary of the Pacific controls the mantle flow and temperature distribution near triple junctions. ② With increase of the relative plate velocity of the strike-slip fault, the slip velocity of the transform fault and the temperature increases, while the effect on the velocity distribution of mantle fluid concentrates within 100 km from the boundary of the ridge. ③ The relative movement of the three plates at the Macquarie triple junction and the South Pacific triple junction makes the shear stress concentrate in the shallow boundary of the transform fault, which results in the centralized distribution of earthquakes with focal depth in a range of 15−25 km. ④ The topography is mainly controlled by the change of the mantle temperature from the mantle flow caused by the relative motion of plates.
  • Amante C, Eakins B W. 2009. ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis[DB/OL]. NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado: National Geophysical Data Center, NOAA. doi: 10.7289/V5C8276M.
    Anderson-Fontana S,Larson R L,Engeiln J F,Lundgren P,Larson R L,Stein S. 1986. Tectonics and evolution of the Juan Fernandez microplate at the Pacific-Nazca-Antarctic triple junction[J]. J Geophys Res,91(B2):2005–2018. doi: 10.1029/JB091iB02p02005
    Behn M D,Boettcher M S,Hirth G. 2007. Thermal structure of oceanic transform faults[J]. Geology,35(4):307–310. doi: 10.1130/G23112A.1
    Bergman E A,Solomon S C. 1988. Transform fault earthquakes in the North Atlantic:Source mechanisms and depth of faulting[J]. J Geophys Res,93(B8):9027–9057. doi: 10.1029/JB093iB08p09027
    Bourgois J,Michaud F. 2002. Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12−10 Myr[J]. Earth Planet Sc Lett,201(1):35–44. doi: 10.1016/S0012-821X(02)00653-2
    Boutonnet E,Arnaud N,Guivel C,Lagabrielle Y,Scalabrino B,Espinoza F. 2010. Subduction of the South Chile active spreading ridge:A 17 Ma to 3 Ma magmatic record in central Patagonia (western edge of Meseta del Lago Buenos Aires,Argentina)[J]. J Volcanol Geoth Res,189(3/4):319–339.
    Conway C E,Bostock H C,Baker J A,Wysoczanski R J,Verdier A L. 2012. Evolution of Macquarie Ridge Complex seamounts:Implications for volcanic and tectonic process at the Australia-Pacific plate boundary south of New Zealand[J]. Mar Geo,295/296/297/298:34–50. doi: 10.1016/j.margeo.2011.11.009
    Dordevic M,Georgen J. 2016. Dynamics of plume–triple junction interaction:Results from a series of three-dimensional numerical models and implications for the formation of oceanic plateaus[J]. J Geophys Res,121(3):1316–1342.
    Dziewonski A M,Chou T. –A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res,86(B4):2825–2852. doi: 10.1029/JB086iB04p02825
    Ekström G,Nettles M,Dziewońnski A M. 2012. The global CMT project 2004−2010:Centroid-moment tensors for 13,017 earthquakes[J]. Phys Earth Planet Inter,200/201:1–9. doi: 10.1016/j.pepi.2012.04.002
    Georgen J E,Lin J. 2002. Three-dimensional passive flow and temperature structure beneath oceanic ridge–ridge–ridge triple junctions[J]. Earth Planet Sc Lett,204(1/2):115–132.
    Georgen J E. 2008. Mantle flow and melting beneath oceanic ridge–ridge–ridge triple junctions[J]. Earth Planet Sc Lett,270(3/4):231–240.
    Georgen J E,Sankar R D. 2010. Effects of ridge geometry on mantle dynamics in an oceanic triple junction region:Implications for the Azores Plateau[J]. Earth Planet Sc Lett,298(1/2):23–34.
    Gregg P M,Behn M D,Lin J,Grove T L. 2009. Melt generation,crystallization,and extraction beneath segmented oceanic transform faults[J]. J Geophys Res,114(B11):1–16.
    Ito G T,Lin J. 1995. Mantle temperature anomalies along the paresent and paleoaxes of the Galapagos spreading center as inferred from gravity analyses[J]. J Geophys Res,100(B3):3733–3745. doi: 10.1029/94JB02594
    Larson R L,Searle R C,Kleinrock M C,Schouten H,Bird R T,Naar D F,Rusby R I,Hooft E E,Lasthiotakis H. 1992. Roller-bearing tectonic evolution of the Juan Fernandez microplate[J]. Nature,356(6370):571–5765. doi: 10.1038/356571a0
    Liu K J,Levander A,Zhai Y B,Porritt R W,Allen R M. 2012. Asthenospheric flow and lithospheric evolution near the Mendocino triple junction[J]. Earth Planet Sc Lett,323/324:60–71. doi: 10.1016/j.jpgl.2012.01.020
    Lowrie W. 2007. Fundamentals of Geophysics[M]. 2nd ed. Cambridge: Cambridge University Press: 1−381.
    Mckenzie D P,Morgan W J. 1969. Evolution of triple junctions[J]. Nature,224(5215):125–133. doi: 10.1038/224125a0
    Morell K D. 2016. Seamount,ridge,and transform subduction in southern Central America[J]. Tectonics,35(2):357–385. doi: 10.1002/tect.v35.2
    Roland E,Behn M D,Hirth G. 2010. Thermal-mechanical behavior of oceanic transform faults:Implications for the spatial distribution of seismicity[J]. Geochem Geophy Geosy,11(7):Q070011–15.
    Smith D K,Schouten H,Montési L,Zhu W L. 2013. The recent history of the Galapagos triple junction preserved on the Pacific plate[J]. Earth Planet Sc Lett,371/372:6–15. doi: 10.1016/j.jpgl.2013.04.018
    Stein C A,Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature,359(6391):123–129. doi: 10.1038/359123a0
    Turcotte D, Schubert G. 2002. Geodynamics[M]. 3rd ed. New York: Cambridge University Press: 1−626.
    van Keken P E,Currie C,King S D,Behn M D,Cagnioncle A,He J H,Katz R F,Lin S C,Parmentier E M,Spiegelman M,Wang K L. 2008. A community benchmark for subduction zone modeling[J]. Phys Earth Planet Inter,171(1/4):187–197.
    Wakabayashi J. 2004. Tectonic mechanisms associated with P-T paths of regional metamorphism:Alternatives to single-cycle thrusting and heating[J]. Tectonophysics,392(1/4):193–218.

Catalog

    Article views (1557) PDF downloads (38) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return