Yang Xiaolin, Yang Jinling, Wei Zigen. 2020: Signature and physical mechanism of borehole dilatometers in response to super typhoon Lekima in southeastern coastal area of China. Acta Seismologica Sinica, 42(3): 306-318. DOI: 10.11939/jass.20190156
Citation: Yang Xiaolin, Yang Jinling, Wei Zigen. 2020: Signature and physical mechanism of borehole dilatometers in response to super typhoon Lekima in southeastern coastal area of China. Acta Seismologica Sinica, 42(3): 306-318. DOI: 10.11939/jass.20190156

Signature and physical mechanism of borehole dilatometers in response to super typhoon Lekima in southeastern coastal area of China

More Information
  • Received Date: October 15, 2019
  • Revised Date: March 10, 2020
  • Available Online: August 16, 2020
  • Published Date: July 20, 2020
  • The aim of this study is to investigate how volumetric strain and super typhoon Lekima interact with each other. By combining the intensity and spatio-temporal evolution of Lekima, we systematically analyze the extracted volumetric deformation of shallow crust at five stations in the southeastern coastal area of China induced by Lekima using a decomposition analysis called the empirical mode decomposition (EMD). Furthermore, we discuss the physical mechanism of typhoon-induced volumetric strain. The results show that: ① The super typhoon’s signature consists in a ground dilatation due to barometric pressure drop drastically, generally followed by a ground compression due to the barometric pressure recovery. The dynamic patterns for the volumetric strain and the barometric pressure are both similar to the symme-trical funnel, and the response of volumetric strain to the barometric pressure is almost instant and linear. In addition, the durations are nearly equivalent for both of them. ② The maximum magnitude in volumetric strain induced by barometric pressure with fluctuation of −18.2 hPa can reach up to −112.1×10−9 in the 62 m deep borehole, and the corresponding coefficient of barometric pressure response is about 6.2×10−9/hPa at the 103-hour period. ③ Obviously, the dilatometer records can be remotely disturbed by super typhoon at a distance of approximately 980 km away from the borehole site. When the typhoon center approaches or moves away from the borehole site, the dilatational magnitude of borehole strain will increase or decrease correspondingly. The obtained results can be used not only for identifying and determining reasonably the physical mechanism of anomalous changes induced by typhoon in low-frequency range for southeastern coastal and inland areas in China, but also for contributing the reliably observational evidences to the theoretical model research for the volumetric strain in response to barometric pressure in the low-frequency range.
  • 陈孔沫. 1981. 台风气压场和风场模式[J]. 海洋学报,<bold>3</bold>(1):44–56.
    Chen K M. 1981. The typhoon pressure field and wind field models[J]. <italic>Acta Oceanologica Sinica</italic>,<bold>3</bold>(1):44–56 (in Chinese).
    冯志军,赵金花,荆强,陈安范,殷海涛,李杰. 2009. 青岛钻孔体应变短时畸变分析[J]. 山西地震,(4):42–47.
    Feng Z J,Zhao J H ,Jing Q,Chen A F,Yin H T,Li J. 2009. Study on the short time distortion anomaly of borehole volume strain in Qingdao[J]. <italic>Earthquake Research in Shanxi</italic>,(4):42–47 (in Chinese).
    梁溯安. 2012. 东阳江(流域)水污染物总量控制研究[D]. 杭州: 浙江大学: 29.
    Liang S A. 2012. Total Amount Control of Water Pollution in Dongyangjiang River[D]. Hangzhou: Zhejiang University: 29 (in Chinese).
    彭剑文,曾飞涛,李长洪,苗胜军. 2017. 石英砂岩力学特性及各向异性试验研究[J]. 岩土力学,<bold>38</bold>(增刊1):103–112.
    Peng J W,Zeng F T,Li C H,Miao S J. 2017. Experimental study of anisotropy and mechanical property of quartz sandstone[J]. <italic>Rock and Soil Mechanics</italic>,<bold>38</bold>(S1):103–112 (in Chinese).
    邱泽华,唐磊,张宝红,宋茉. 2012. 用小波—超限率分析提取宁陕台汶川地震体应变异常[J]. 地球物理学报,<bold>55</bold>(2):538–546.
    Qiu Z H,Tang L,Zhang B H,Song M. 2012. Extracting anomaly of the Wenchuan earthquake from the dilatometer recording at NSH by means of wavelet-overrun rate analysis[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>55</bold>(2):538–546 (in Chinese).
    邱泽华. 2017. 钻孔应变观测理论与应用[M]. 北京: 地震出版社: 1–407.
    Qiu Z H. 2017. The Observations of Borehole Strainmeters: Theory and Applications[M]. Beijing: Seismological Press: 1–407 (in Chinese).
    苏恺之, 李秀环, 张钧, 马相波, 李海亮. 2002. TJ-2型体应变仪的研制[G]//地壳构造与地壳应力文集. 北京: 中国地震局地壳应力研究所: 113−121.
    Su K Z, Li X H, Zhang J, Ma X B, Li H L. 2002. Manufacture of TJ-2 volume strain meter[G]//Bulletin of the Institute of Crustal Dynamics. Beijing: Institute of Crustal Dynamics, China Earthquake Administration: 113−121 (in Chinese).
    袁金南,林爱兰,刘春霞. 2008. 60年来西北太平洋上不同强度热带气旋的变化特征[J]. 气象学报,<bold>66</bold>(2):213–223.
    Yuan J N,Lin A L,Liu C X. 2008. Change characters of tropical cyclones with different intensities over the western North Pacific during the last 60 years[J]. <italic>Acta Meteorologica Sinica</italic>,<bold>66</bold>(2):213–223 (in Chinese).
    袁媛,方国庆,尹京苑. 2017. 佘山台四分量钻孔应变仪记录的台风扰动特征分析[J]. 地震学报,<bold>39</bold>(5):725–737. doi: 10.11939/jass.2017.05.008
    Yuan Y,Fang G Q,Yin J Y. 2017. Signatures of typhoons on strain records of four component borehole strainmeter at Sheshan station[J]. <italic>Acta Seismologica Sinica</italic>,<bold>39</bold>(5):725–737 (in Chinese).
    张凌空,牛安福. 2008. 中国钻孔体应变仪同震变化观测结果[J]. 国际地震动态,(11):120. doi: 10.3969/j.issn.0253-4975.2008.11.121
    Zhang L K,Niu A F. 2008. Co-seismic strain changes recorded by dilatometers in China[J]. <italic>Recent Developments in World Seismology</italic>,(11):120 (in Chinese).
    张凌空,牛安福. 2019. 周期气压波对地壳岩石应变测量影响的理论解[J]. 地球物理学进展,<bold>34</bold>(4):1366–1370. doi: 10.6038/pg2019CC0244
    Zhang L K,Niu A F. 2019. Theoretical solution of periodic pressure wave effect on crustal strain[J]. <italic>Progress in Geophysics</italic>,<bold>34</bold>(4):1366–1370 (in Chinese).
    中央气象台台风网. 2019. 1909利奇马Lekima[EB/OL]. [2019−09−02]. http://typhoon.nmc.cn/web.html.
    Typhoon and Marine Weather Monitoring and Warning, National Meteorological Centre. 2019. Super typhoon Lekima (1909)[EB/OL]. [2019−09−02]. http://typhoon.nmc.cn/web.html (in Chinese).
    周龙寿,邱泽华. 2008. 地壳应变场对气压短周期变化的响应[J]. 地球物理学进展,<bold>23</bold>(6):1717–1726.
    Zhou L S,Qiu Z H. 2008. The response of crustal strain field to short-period atmospheric pressure variation[J]. <italic>Progress in Geophysics</italic>,<bold>23</bold>(6):1717–1726 (in Chinese).
    檜皮久義,佐藤馨,二瓶信一,福留篤男,竹内新,古屋逸夫. 1983. 埋込式体積歪計の気圧補正[J]. 験震時報,<bold>47</bold>:91–111.
    Hikawa H,Sato K,Nihei S,Fukudome A,Takeuchi H,Furuya I. 1983. Correction due to atmospheric pressure changes of data of the borehole volume strainmeter[J]. <italic>Quarterly Journal of Seismology</italic>,<bold>47</bold>:91–111 (in Japanese).
    木村一洋,露木貴裕,菅沼一成,長谷川浩,見須裕美,藤田健一. 2015. タンクモデルによる体積ひずみ計データの降水補正について[J]. 験震時報,<bold>78</bold>:93–158.
    Kimura K,Tsuyuki T,Suganuma I,Hasegawa H,Misu H,Fujita K. 2015. Rainfall correction of volumetric stainmeter data by tank models[J]. <italic>Quarterly Journal of Seismology</italic>,<bold>78</bold>:93–158 (in Japanese).
    上垣内修. 1987. 体積歪,傾斜データに対する気圧の影響の補正に関する物理的考察[J]. 験震時報,<bold>50</bold>:41–49.
    Kamigaichi O. 1987. Physical considerations on the correction methods of volumetric strain and tilt data for the effects of atmospheric pressure chang[J]. <italic>Quarterly Journal of Seismology</italic>,<bold>50</bold>:41–49 (in Japanese).
    Asai Y,Ishii H,Aoki H. 2009. Comparison of tidal strain changes observed at the borehole array observation system with in situ rock properties in the Tono region,central Japan[J]. <italic>J Geodyn</italic>,<bold>48</bold>(3/4/5):292–298. doi: 10.1016/j.jog.2009.09.024
    Barbour A J,Crowell B W. 2017. Dynamic strains for earthquake source characterization[J]. <italic>Seism Res Lett</italic>,<bold>88</bold>(2A):354–370. doi: 10.1785/0220160155
    Bonaccorso A,Linde A,Currenti G,Sacks S,Sicali A. 2016. The borehole dilatometer network of Mount Etna:A powerful tool to detect and infer volcano dynamics[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>121</bold>(6):4655–4669. doi: 10.1002/2016JB012914
    Evertson D W. 1977. Borehole Strainmeters for Seismology[R]. Austin, Texas: Applied Research Lab, University of Texas: No. ARL-TR-77-62.
    Hsu Y J,Chang Y S,Liu C C,Lee H M,Linde A T,Sacks S I,Kitagawa G,Chen Y G. 2015. Revisiting borehole strain,typhoons,and slow earthquakes using quantitative estimates of precipitation-induced strain changes[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>120</bold>:4556–4571. doi: 10.1002/2014JB011807
    Huang N E,Shen Z,Long S R,Wu M C,Shih H H,Zheng Q,Yen N C,Tung C C,Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. <italic>Proc R Soc Lond A</italic>,<bold>454</bold>:903–995. doi: 10.1098/rspa.1998.0193
    Linde A T,Gladwin M T,Johnston M J S,Gwyther R L,Bilham R G. 1996. A slow earthquake sequence on the San Andreas fault[J]. <italic>Nature</italic>,<bold>383</bold>:65–68. doi: 10.1038/383065a0
    Liu C C,Linde A T,Sacks I S. 2009. Slow earthquakes triggered by typhoons[J]. <italic>Nature</italic>,<bold>459</bold>(7248):833–836. doi: 10.1038/nature08042
    Mouyen M,Canitano A,Chao B F,Hsu Y J,Steer P,Longuevergne L,Boy J P. 2017. Typhoon-induced ground deformation[J]. <italic>Geophys Res Lett</italic>,<bold>44</bold>(21):11004–11011. doi: 10.1002/2017GL075615
    Matsuura T,Yumoto M,Iizuka S. 2003. A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific[J]. <italic>Clim Dyn</italic>,<bold>21</bold>:105–117. doi: 10.1007/s00382-003-0327-3
    NOAA. 2019. National centers for environmental information[EB/OL]. [2019−09−02]. https://www.ncdc.noaa.gov/cdo-web/datatools/findstation.
    Peduzzi P,Chatenoux B,Dao H,Bono A D,Herold C,Kossin J,Mouton F,Nordbeck O. 2012. Global trends in tropical cyclone risk[J]. <italic>Nat Clim Change</italic>,<bold>2</bold>(2):289–294.
    Peng H,Kitagawa G,Takanami T,Matsumoto N. 2014. State-space modeling for seismic signal analysis[J]. <italic>Appl Math Model</italic>,<bold>38</bold>(2):738–746. doi: 10.1016/j.apm.2013.07.008
    Roeloffs E A. 2006. Evidence for aseismic deformation rate changes prior to earthquakes[J]. <italic>Annu Rev Earth Planet Sci</italic>,<bold>34</bold>:591–627. doi: 10.1146/annurev.earth.34.031405.124947
    Sacks I S,Suyehiro S,Evertson D W. 1971. Sacks-Evertson strainmeter,its installation in Japan and some preliminary results concerning strain steps[J]. <italic>Proc Jpn Acad</italic>,<bold>47</bold>(9):707–712. doi: 10.2183/pjab1945.47.707
    Sacks I S,Suyehiro S,Linde A T,Snoke J A. 1978. Slow earthquakes and stress redistribution[J]. <italic>Nature</italic>,<bold>275</bold>:599–602. doi: 10.1038/275599a0
    Takanami T,Linde A T,Sacks S I,Kitagawa G,Peng H. 2013. Modeling of the post-seismic slip of the 2003 Tokachi-Oki earthquake <italic>M</italic>8 off Hokkaido:Constraints from volumetric strain[J]. <italic>Earth Planets Space</italic>,<bold>65</bold>:731–738. doi: 10.5047/eps.2012.12.003
    Wu L G,Wang B,Geng S Q. 2005. Growing typhoon influence on east Asia[J]. <italic>Geophys Res Lett</italic>,<bold>32</bold>:L18703.
    Xu X D,Peng S Q,Yang X J,Xu H X,Tong D Q,Wang D X,Guo Y D,Chan J C L,Chen L S,Yu W,Li Y N,Lai Z J,Zhang S J. 2013. Does warmer China land attract more super typhoons?[J]. <italic>Sci Rep</italic>,<bold>3</bold>:1522. doi: 10.1038/srep01522
  • Cited by

    Periodical cited type(4)

    1. 郑雪刚,马学军,沙木哈尔·叶尔肯,赵鹏毕. 利用远震深度震相pP测定玛多M_S7.4地震震源深度. 内陆地震. 2024(04): 307-314 .
    2. Biao Yang,YanBin Wang,Li Zhao,LiMing Yang,ChengNing Sha. Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications. Earth and Planetary Physics. 2021(03): 296-304 .
    3. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 .
    4. 鲁志楠,边银菊,王婷婷,刘森. 利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减. 地震学报. 2021(03): 287-302+260 . 本站查看

    Other cited types(1)

Catalog

    Article views (873) PDF downloads (61) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return