Zhang Y X,Hu Y,Segun S B. 2021. 3D numerical model for viscoelastic postseismic deformation following the Maule MW8.8 earthquake in 2010. Acta Seismologica Sinica43(2):180−193. DOI: 10.11939/jass.20200071
Citation: Zhang Y X,Hu Y,Segun S B. 2021. 3D numerical model for viscoelastic postseismic deformation following the Maule MW8.8 earthquake in 2010. Acta Seismologica Sinica43(2):180−193. DOI: 10.11939/jass.20200071

3D numerical model for viscoelastic postseismic deformation following the Maule MW8.8 earthquake in 2010

More Information
  • Received Date: April 17, 2020
  • Revised Date: June 21, 2020
  • Available Online: April 25, 2021
  • Published Date: March 14, 2021
  • The 2010 MW8.8 Maule earthquake occurred near the plate boundary between the Nazca plate and the South American plate. The earthquake produced significant coseismic and postseismic deformation. The maximum coseismic motion is about 5 m in the horizontal direction and about 5 cm subsidence. After correcting the GPS data for secular, seasonal and annual trends, the postseismic cumulative motion within the first 6 years after the earthquake include up to about 68 cm in the horizontal direction and up to 20 cm uplift. The three-dimensional (3D) viscoelastic structure can be constrained by the postseismic deformation of the 2010 earthquake. We have constructed a 3D finite element model to study the effects of the rheological structure on the postseismic deformation of the 2010 earthquake. We assume the viscoelasticrelaxation of the upper mantle to be represented by the Burgers rheology. And in the paper, a 2 km thick weak shear zone attached to the megathrust is used to simulate the afterslip. Based on the comparison with the GPS observation data, the preferred model determined that a 120 km thick asthenosphere with a viscosity of 1×1019 Pa·s at the top of the oceanic upper mantle is required to fit the data. The afterslip simulated by shear zone with a viscosity of 5×107 Pa·s is up to 2 m in the first 2 years and decays rapidly with time.
  • 黄禄渊,张贝,瞿武林,张怀,石耀霖. 2017. 2010智利Maule特大地震的同震效应[J]. 地球物理学报,60(3):972–984. doi: 10.6038/cjg20170312
    Huang L Y,Zhang B,Qu W L,Zhang H,Shi Y L. 2017. The co-seismic effects of 2010 Maule earthquake[J]. Chinese Journal of Geophysics,60(3):972–984 (in Chinese).
    林鑫,郝金来,姚振兴. 2017. 智利MW8.3地震与MW8.8地震的震源过程及其引起的库仑应力特征[J]. 地球物理学报,60(7):2680–2692.
    Lin X,Hao J L,Yao Z X. 2017. Rupture process and Coulomb stress change of the MW8.3 earthquake and the MW8.8 earthquake,Chile[J]. Chinese Journal of Geophysics,60(7):2680–2692 (in Chinese).
    Aagaard B, Williams C, Knepley M, Williams C. 2017. Computational infrastructure for geodynamics: Software[CP/OL]. [2019-08-05]. https://geodynamics.org/cig/software/pylith.
    Bedford J,Moreno M,Baez J C,Lange D,Tilmann F,Rosenau M,Heidbach O,Oncken O,Bartsch M,Rietbrock A,Tassara A,Bevis M,Vigny C. 2013. A high-resolution,time-variable afterslip model for the 2010 Maule MW8.8,Chile megathrust earthquake[J]. Earth Planet Sci Lett,383:26–36. doi: 10.1016/j.jpgl.2013.09.020
    Bedford J,Moreno M,Li S Y,Oncken O,Baez J C,Bevis M,Heidbach O,Lange D. 2016. Separating rapid relocking,afterslip,and viscoelastic relaxation:An application of the postseismic straightening method to the Maule 2010 cGPS[J]. J Geophys Res:Solid Earth,121(10):7618–7638. doi: 10.1002/2016JB013093
    Blewitt G,Hammond W C,Kreemer Corné K. 2018. Harnessing the GPS data explosion for interdisciplinary science[J]. Eos,99:1–2.
    Chen L. 2017. Layering of subcontinental lithospheric mantle[J]. Science Bulletin,62(14):1030–1034. doi: 10.1016/j.scib.2017.06.003
    Hayes G P,Wald D J,Johnson R L. 2012. Slab1.0:A three-dimensional model of global subduction zone geometries[J]. J Geophys Res:Solid Earth,117(B1):B01302.
    Hicks S P,Rietbrock A,Ryder I M,Lee C S,Miller M. 2014. Anatomy of a megathrust:The 2010 M8.8 Maule,Chile earthquake rupture zone imaged using seismic tomography[J]. Earth Planet Sci Lett,405:142–155. doi: 10.1016/j.jpgl.2014.08.028
    Hu Y,Wang K L,He J H,Klotz J,Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res:Solid Earth,109(B12):B12403. doi: 10.1029/2004JB003163
    Hu Y,Bürgmann R,Banerjee P,Feng L J,Hill E M,Ito T,Tabei T,Wang K L. 2016a. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake[J]. Nature,538(7625):368–372. doi: 10.1038/nature19787
    Hu Y,Bürgmann R,Uchida N,Banerjee P,Freymueller J T. 2016b. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake[J]. J Geophys Res:Solid Earth,121(1):385–411. doi: 10.1002/2015JB012508
    Igarashi T,Matsuzawa T,Hasegawa A. 2003. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone[J]. J Geophys Res:Solid Earth,108(B5):2249.
    Klein E,Fleitout L,Vigny C,Garaud J D. 2016. Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 MW8.8 Maule earthquake (Chile)[J]. Geophys J Int,205(3):1455–1472. doi: 10.1093/gji/ggw086
    Klotz J,Khazaradze G,Angermann D,Reigber C,Perdomo R,Cifuentes O. 2001. Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes[J]. Earth Planet Sci Lett,193(3/4):437–446.
    Li S Y,Moreno M,Bedford J,Rosenau M,Heidbach O,Melnick D,Oncken O. 2017. Postseismic uplift of the Andes following the 2010 Maule earthquake:Implications for mantle rheology[J]. Geophys Res Lett,44(4):1768–1776.
    Li S Y,Bedford J,Moreno M,Barnhart W D,Rosenau M,Oncken O. 2018. Spatio-temporal variation of mantle viscosity and the presence of cratonic mantle inferred from 8 years of postseismic deformation following the 2010 Maule,Chile,earthquake[J]. Geochem,Geophys,Geosyst,19(9):3272–3285.
    Moreno M,Melnick D,Rosenau M,Baez J,Klotz J,Oncken O,Tassara A,Chen J,Bataille K,Bevis M,Socquet A,Bolte J,Vigny C,Brooks B,Ryder I,Grund V,Smalley B,Carrizo D,Bartsch M,Hase H. 2012. Toward understanding tectonic control on the MW8.8 2010 Maule Chile earthquake[J]. Earth Planet Sci Lett,321-322:152–165. doi: 10.1016/j.jpgl.2012.01.006
    Oncken O, Chong G, Franz G, Giese P, Götze H J, Ramos V A, Strecker M R, Wigger P. 2006. The Andes: Active Subduction Orogeny[M]. Berlin, Heidelberg: Springer Science & Business Media: 443–457.
    Ruegg J C,Rudloff A,Vigny C,Madariaga R,de Chabalier J B,Campos J,Kausel E,Barrientos S,Dimitrov D. 2009. Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile[J]. Phys Earth Planet Inter,175(1/2):78–85.
    Sun T H,Wang K L,He J H. 2018. Crustal deformation following great subduction earthquakes controlled by earthquake size and mantle rheology[J]. J Geophys Res:Solid Earth,123(6):5323–5345. doi: 10.1029/2017JB015242
    Tong X P,Sandwell D,Luttrell K,Brooks B,Bevis M,Shimada M,Foster J,Smalley Jr R,Parra H,Soto J C B,Blanco M,Kendrick E,Genrich J,Caccamise II D J. 2010. The 2010 Maule,Chile earthquake:Downdip rupture limit revealed by space geodesy[J]. Geophys Res Lett,37(24):L24311.
    Uchida N,Matsuzawa T. 2013. Pre- and postseismic slow slip surrounding the 2011 Tohoku-Oki earthquake rupture[J]. Earth Planet Sci Lett,374:81–91. doi: 10.1016/j.jpgl.2013.05.021
    Utada H,Kiyoshi B. 2014. Estimating the electrical conductivity of the melt phase of a partially molten asthenosphere from seafloor magnetotelluric sounding data[J]. Phys Earth Planet Inter,227:41–47. doi: 10.1016/j.pepi.2013.12.004
    Wang K L,Hu Y,Bevis M,Kendrick E,Smalley Jr R,Vargas R B,Lauría E. 2007. Crustal motion in the zone of the 1960 Chile earthquake:Detangling earthquake-cycle deformation and forearc-sliver translation[J]. Geochem,Geophys,Geosyst,8(10):Q10010.
    Wang K L,Hu Y,He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature,484(7394):327–332. doi: 10.1038/nature11032
    Watts A B,Zhong S. 2000. Observations of flexure and the rheology of oceanic lithosphere[J]. Geophys J Int,142(3):855–875. doi: 10.1046/j.1365-246x.2000.00189.x
    Weiss J R,Qiu Q,Barbot S,Wright T J,Foster J H,Saunders A,Brooks B A,Bevis M,Kendrick E,Ericksen T L,Avery J,Smalley Jr R,Cimbaro S R,Lenzano L E,Barón J,Báez J C,Echalar A. 2019. Illuminating subduction zone rheological properties in the wake of a giant earthquake[J]. Sci Adv,5(12):eaax6720. doi: 10.1126/sciadv.aax6720
    Yue H,Lay T,Rivera L,An C,Vigny C,Tong X P,Soto J C B. 2014. Localized fault slip to the trench in the 2010 Maule,Chile MW8.8 earthquake from joint inversion of high-rate GPS,teleseismic body waves,InSAR,campaign GPS,and tsunami observations[J]. J Geophys Res:Solid Earth,119(10):7786–7804. doi: 10.1002/2014JB011340
  • Related Articles

  • Cited by

    Periodical cited type(9)

    1. 孟上九,秦艺峰,王淼,孙志远,穆海龙. 矿震机理及其次生灾害监测技术研究进展. 世界地震工程. 2024(03): 103-118 .
    2. 王忠忠,庄卓涵,胡飞跃,黄文龙. 广州北部丘陵区岩溶塌陷形成条件与易发性评价. 中国地质灾害与防治学报. 2024(04): 163-172 .
    3. 任涛,田国亮,宁志杰,周爱红,李宽,陈石. 基于地理探测器和随机森林的岩溶塌陷易发性评价. 灾害学. 2023(03): 227-234 .
    4. 徐玉聪,朱建,董建辉,周鲁. 三峡库区仙女山断裂周缘地震类型特征识别. 水利水电快报. 2022(02): 9-16 .
    5. 吴涛,庞聪,江勇,丁炜,廖成旺. 基于随机子空间和Ada Boost集成学习的地震事件性质辨识研究. 地球物理学进展. 2022(03): 981-988 .
    6. 尹欣欣,蔡润,陈文凯,彭立顺,李少华. 甘肃塌陷地震震相识别研究. 地震工程学报. 2021(02): 259-263 .
    7. 周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 .
    8. 赵胤翔,赵金昌,马忠忠,常乐,李春明. 锚杆无损检测反射信号分形分析及其应用研究. 中国矿业. 2021(11): 101-108 .
    9. 梁飞,阎春恒,向巍,黄惠宁,原永东,李莎. 广西地区不同类型地震震源参数特征. 华北地震科学. 2020(S2): 33-38 .

    Other cited types(3)

Catalog

    Article views (1468) PDF downloads (162) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return