Ren M Y,Liu Z. 2022. Global sensitivity analysis of the generalized Pareto distribution model for seismicity in the northeast Tibetan. Acta Seismologica Sinica44(6):1035−1048. DOI: 10.11939/jass.20210112
Citation: Ren M Y,Liu Z. 2022. Global sensitivity analysis of the generalized Pareto distribution model for seismicity in the northeast Tibetan. Acta Seismologica Sinica44(6):1035−1048. DOI: 10.11939/jass.20210112

Global sensitivity analysis of the generalized Pareto distribution model for seismicity in the northeast Tibetan

More Information
  • Received Date: June 20, 2021
  • Revised Date: February 17, 2022
  • Available Online: October 20, 2022
  • Published Date: December 12, 2022
  • Because the selected values of input parameters of generalized Pareto distribution (GPD) model are difficult to avoid uncertainty, the input parameters uncertainty of this model may lead to uncertainty in the seismic hazard estimation. In this paper, we selected northeastern Tibetan Plateau as the case studied area, and proposed an uncertainty analysis process and method of seismic hazard estimation based on the global sensitivity analysis. First, we used the GPD seismicity model to obtain the results of seismic hazard estimation. And then, we selected starting time of earthquake catalog and magnitude threshold to be the input parameters of seismicity model. The E-FAST method with global sensitivity analysis function was used to quantitatively analyze the influence of the uncertainties of the two parameters and the interaction between the two parameters on the uncertainty of seismic hazard estimation. The results show that the seismic hazard estimation of the GPD model is more sensitive to the magnitude threshold. With different return periods, the sensitivity degree of seismic hazard estimation to magnitude threshold is different. For different return periods, there are nonlinear effects between the two input parameters on the uncertainty of seismic hazard estimation, and the degree of nonlinear effects is different. The uncertainty analysis process and method proposed in this paper can be applied to the uncertainty analysis of seismic hazard estimation based on other seismicity models.
  • 顾功叙. 1983. 中国地震目录: 公元前1831—公元1969年[M]. 北京: 科学出版社: 773–791.
    Gu G X. 1983. Catalogue of Earthquakes in China: 1831BC-1969AD[M]. Beijing: Science Press: 773–791 (in Chinese).
    国家地震局震害防御司. 1995. 中国历史强震目录[M]. 北京: 地震出版社: 496–499.
    Department of Earthquake Damage Prevention, State Seismological Bureau. 1995. Catalogue of Historical Strong Earthquakes in China[M]. Beijing: Seismological Press: 496–499 (in Chinese).
    洪明理,任鲁川,霍振香. 2014. 基于E-FAST法分析海啸波高对潜在海啸源参数的敏感性[J]. 地震学报,36(2):252–260.
    Hong M L,Ren L C,Huo Z X. 2014. Sensitivity analysis on maximum tsunami wave heights to the potential tsunami source parameters based on extended FAST method[J]. Acta Seismologica Sinica,36(2):252–260 (in Chinese).
    胡聿贤, 鹿林. 1990. 地震活动性估计的不确定性[G]//地震危险性分析中的综合概率法. 北京: 地震出版社: 176–177.
    Hu Y X, Lu L. 1990. Uncertainty in seismicity estimation[G]//Synthetic Probability Method in Seismic Hazard Analysis. Beijing: Seismological Press: 176–177 (in Chinese).
    胡聿贤. 1999. 地震安全性评价技术教程[M]. 北京: 地震出版社: 227–228.
    Hu Y X. 1999. Seismic Safety Evaluation Technology Tutorial[M]. Beijing: Seismological Press: 227–228 (in Chinese).
    黄玮琼,李文香,曹学锋. 1994. 中国大陆地震资料完整性研究之二:分区地震资料基本完整的起始年分布图象[J]. 地震学报,16(4):423–432.
    Huang W Q,Li W X,Cao X F. 1994. Study on the integrity of seismic data in Mainland China Ⅱ:The initial year distribution images of the complete data on each seismic zone[J]. Acta Seismologica Sinica,16(4):423–432 (in Chinese).
    蒋溥, 戴丽思. 1993. 工程地震学概论[M]. 北京: 地震出版社: 110.
    Jiang P, Dai L S. 1993. Introduction to Engineering Seismology[M]. Beijing: Seismological Press: 110 (in Chinese).
    刘杰,陈棋福,陈顒. 1996. 华北地区地震目录完全性分析[J]. 地震,16(1):59–67.
    Liu J,Chen Q F,Chen Y. 1996. Completeness analysis of the seismic catalog in North China region[J]. Earthquake,16(1):59–67 (in Chinese).
    潘华,李金臣. 2016. 新一代地震区划图的地震活动性模型[J]. 城市与减灾,(3):28–33. doi: 10.3969/j.issn.1671-0495.2016.03.008
    Pan H,Li J C. 2016. A seismicity model for a new generation of seismic zoning maps[J]. City and Disaster Reduction,(3):28–33 (in Chinese).
    钱小仕,王福昌,盛书中. 2013a. 基于广义帕累托分布的地震震级分布尾部特征分析[J]. 地震学报,35(3):341–350.
    Qian X S,Wang F C,Sheng S Z. 2013a. Characterization of tail distribution of earthquake magnitudes via generalized Pareto distribution[J]. Acta Seismologica Sinica,35(3):341–350 (in Chinese).
    钱小仕,蔡晓光,任晴晴. 2013b. 中国大陆活动地块边界带强震震级分布特征研究[J]. 地震工程与工程振动,33(1):212–220.
    Qian X S,Cai X G,Ren Q Q. 2013b. Characteristics of the great earthquake magnitude distributions for active tectonic boundaries in Chinese mainland[J]. Earthquake Engineering and Engineering Vibration,33(1):212–220 (in Chinese).
    任梦依. 2018. 龙门山地区的地震活动性广义帕累托模型构建[J]. 地震研究,41(2):226–232. doi: 10.3969/j.issn.1000-0666.2018.02.010
    Ren M Y. 2018. The establishment of generalized Pareto distribution model of seismicity in Longmenshan region[J]. Journal of Seismological Research,41(2):226–232 (in Chinese).
    任雪梅,高孟潭,俞言祥. 2012a. 基于MGR模型修正我国大陆中强以上地震的震级-频度关系和确定震级极限值[J]. 地震学报,34(3):331–338.
    Ren X M,Gao M T,Yu Y X. 2012a. Modification of magnitude-frequency relation and magnitude limit determination based on MGR model for moderate-strong earthquakes in Chinese mainland[J]. Acta Seismologica Sinica,34(3):331–338 (in Chinese).
    任雪梅,高孟潭,张纳莉. 2012b. 基于MGR模型的我国大陆地区各地震带1970年以来震级·频度关系和震级上限[J]. 中国地震,28(3):320–327.
    Ren X M,Gao M T,Zhang N L. 2012b. Magnitude-frequency relation and magnitude limit of seismic zones based on the MGR model in Chinese mainland since 1970[J]. Earthquake Research in China,28(3):320–327 (in Chinese).
    史道济. 2006. 实用极值统计方法[M]. 天津: 天津科学技术出版社: 28–32.
    Shi D J. 2006. Practical Extremum Statistical Methods[M]. Tianjin: Tianjin Science and Technology Press: 28–32 (in Chinese).
    宋明丹,冯浩,李正鹏,高建恩. 2014. 基于Morris和EFAST的CERES-Wheat模型敏感性分析[J]. 农业机械学报,45(10):124–131. doi: 10.6041/j.issn.1000-1298.2014.10.020
    Song M D,Feng H,Li Z P,Gao J E. 2014. Global sensitivity analyses of DSSAT-CERES-Wheat model using Morris and EFAST methods[J]. Transactions of the Chinese Society for Agricultural Machinery,45(10):124–131 (in Chinese).
    田建伟,刘哲,任鲁川. 2017. 基于广义帕累托分布的马尼拉海沟俯冲带地震危险性估计[J]. 地震,37(1):158–165.
    Tian J W,Liu Z,Ren L C. 2017. Seismic hazard estimation of the Manila trench subduction zone based on generalized Pareto distribution[J]. Earthquake,37(1):158–165 (in Chinese).
    王健,高孟潭. 1996. 地震危险性分析中的参数敏感性研究[J]. 地震学报,18(4):489–493.
    Wang J,Gao M T. 1996. Study on parameter sensitivity in seismic hazard analysis[J]. Acta Seismologica Sinica,18(4):489–493 (in Chinese).
    徐化超. 2018. 青藏高原东北缘地区主要活动断裂带的运动学研究[D]. 北京: 中国地震局地震预测研究所: 15–41.
    Xu H C. 2008. Kinematics Study of Main Active Fault Zones in the Northeastern Qinghai-Tibet Plateau[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 15–41 (in Chinese).
    徐伟进. 2012. 地震危险性分析中地震时空统计分布模型研究[D]. 北京: 中国地震局地球物理研究所: 4–5.
    Xu W J. 2012. Study on Space-Time Statistical Distribution Models of Earthquakes in Seismic Hazard Analysis[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 4–5 (in Chinese).
    Coles S. 2001. An Introduction to Statistical Modeling of Extreme Values[M]. London: Springer-Verlag: 74–91.
    Cramer C H,Petersen M D,Reichle M S. 1996. A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles,Ventura,and Orange counties,California[J]. Bull Seismol Soc Am,86(6):1681–1691. doi: 10.1785/BSSA0860061681
    Cukier R I,Fortuin C M,Shuler K E. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I:Theory[J]. J Chem Phys,59(8):3873–3878. doi: 10.1063/1.1680571
    Cukier R I,Levine H B,Shuler K E. 1978. Nonlinear sensitivity analysis of multiparameter model systems[J]. J Comput Phys,26(1):1–42. doi: 10.1016/0021-9991(78)90097-9
    Dutfoy A. 2019. Estimation of tail distribution of the annual maximum earthquake magnitude using extreme value theory[J]. Pure Appl Geophys,176(2):527–540. doi: 10.1007/s00024-018-2029-0
    Fisher R A,Tippett L H C. 1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample[J]. Math Proc Camb Philos Soc,24(2):180–190. doi: 10.1017/S0305004100015681
    Gan W J,Zhang P Z,Shen Z K,Niu Z J,Wang M,Wan Y G,Zhou D M,Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res:Solid Earth,112(B8):B08416.
    Gardner J K, Knopoff L. 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?[J] Bull Seismol Soc Am, 64(5): 1363-1367.
    Knopoff L,Gardner J K. 1972. Higher seismic activity during local night on the raw worldwide earthquake catalogue[J]. Geophys J Int,28(3):311–313. doi: 10.1111/j.1365-246X.1972.tb06133.x
    Lawrence Livermore National Laboratory (LLNL). 1989. Seismic hazard characterization of 69 nuclear plant sites East of the Rocky Mountains: Methodology, input data and comparisons to previous results for ten test site[J]. NUREG/CR-5250-V1.
    Li Y H,Wang X C,Zhang R Q,Wu Q J,Ding Z F. 2017. Crustal structure across the NE Tibetan Plateau and Ordos block from the joint inversion of receiver functions and Rayleigh-wave dispersions[J]. Tectonophysics,705:33–41. doi: 10.1016/j.tecto.2017.03.020
    McGuire R K,Shedlock K M. 1981. Statistical uncertainties in seismic hazard evaluations in the United States[J]. Bull Seismol Soc Am,71(4):1287–1308.
    McGuire R K. 1987. Seismic hazard uncertainty and its effects on design earthquake ground motions[C]//Proceeding of International Seminar on Seismic Zonation. Guangzhou: State Seismological Bureau: 351–359.
    Petersen M D, Frankel A D, Harmsen S C, Mueller C S, Haller K M, Wheeler R L, Wesson R L, Zeng Y H, Boyd O S, Perkins D M, Luco N, Field E H, Wills C J, Rukstales K S. 2008. Documentation for the 2008 Update of the United States National Seismic Hazard Maps[R]. Reston, Virginia: U.S. Geological Survey: 1–60.
    Pisarenko V F,Sornette D. 2003. Characterization of the frequency of extreme earthquake events by the generalized Pareto distribution[J]. Pure Appl Geophys,160(12):2343–2364. doi: 10.1007/s00024-003-2397-x
    Pisarenko V F,Sornette A,Sornette D,Rodkin M V. 2014. Characterization of the tail of the distribution of earthquake magnitudes by combining the GEV and GPD descriptions of extreme value theory[J]. Pure Appl Geophys,171(8):1599–1624. doi: 10.1007/s00024-014-0882-z
    Saltelli A,Tarantola S,Chan K P S. 1999. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics,41(1):39–56. doi: 10.1080/00401706.1999.10485594
    Sobol I M. 1993. Sensitivity estimates for nonlinear mathematical models[J]. Math Model Comput Exp,1(4):407–414.
    Taylor M,Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution,contemporary strain field,and Cenozoic volcanism[J]. Geosphere,5(3):199–214. doi: 10.1130/GES00217.1
    Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28:211–280. doi: 10.1146/annurev.earth.28.1.211
  • Related Articles

Catalog

    Article views (243) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return