Li H J,Wang J X. 2022. The mass property model and its implementation in the time-domain spectral element method. Acta Seismologica Sinica44(1):60−75. DOI: 10.11939/jass.20210117
Citation: Li H J,Wang J X. 2022. The mass property model and its implementation in the time-domain spectral element method. Acta Seismologica Sinica44(1):60−75. DOI: 10.11939/jass.20210117

The mass property model and its implementation in the time-domain spectral element method

More Information
  • Received Date: June 29, 2021
  • Revised Date: August 24, 2021
  • Available Online: February 14, 2022
  • Published Date: March 17, 2022
  • The mathematical mechanism of constructing mass property model for the time-domain spectral elements is studied in this paper. A unified mathematical method for directly deriving consistent and lumped mass matrix is established for the time-domain Chebyshev and Legendre spectral elements. The characteristics of two mass property models of the spectral elements are analyzed through comparison. Meanwhile, the rationality of mass property model of spectral element is discussed from physical perspective. This study reveals that the formation of consistent or lumped mass matrix in time-domain spectral elements depends on whether the quadrature points are coincident with the element nodes or not. To be specific, the Gauss-Legendre quadrature results in consistent mass matrix for spectral elements, and the Gauss-Lobatto quadrature leads to lumped mass matrix. The lumped mass matrix is more reasonable in physics. The two mass property models of spectral elements have comparable performance and they can both achieve good results for dynamic problems.
  • 丁志华, 周红, 蒋涵. 2014. 三维台阶地形地震动效应研究[J]. 地震学报, 36(2): 184-199 doi: 10.3969/j.issn.0253-3782.2014.02.004

    Ding Z H, Zhou H, Jiang H. 2014. Effect of 3-D step topography on ground motion[J]. Acta Seismologica Sinica, 36(2): 184-199 (in Chinese). doi: 10.3969/j.issn.0253-3782.2014.02.004
    韩天成, 于彦彦, 丁海平. 2020. 直下型断层的破裂速度对盆地地震效应的影响[J]. 地震学报, 42(4): 457-470 doi: 10.11939/jass.20190177

    Han T C, Yu Y Y, Ding H P. 2020. Influence of rupture velocity of the directly-beneath fault on the basin seismic effect[J]. Acta Seismologica Sinica, 42(4): 457-470 (in Chinese). doi: 10.11939/jass.20190177
    廖振鹏. 2002. 工程波动理论导论[M]. 第2版. 北京: 科学出版社: 59–63

    Liao Z P. 2002. Introduction to Wave Motion Theories in Engineering[M]. 2nd ed. Beijing: Science Press: 59–63 (in Chinese).
    王勖成. 2003. 有限单元法[M]. 北京: 清华大学出版社: 472–475

    Wang X C. 2003. Finite Element Method[M]. Beijing: Tsinghua University Press: 472–475 (in Chinese).
    邢浩洁. 2017. 透射边界机理及其在地震波动谱元模拟中的应用[D]. 南京: 南京工业大学: 39–82

    Xing H J. 2017. Mechanism of Transmitting Boundary and Its Application to Seismic Wave Simulation With Spectral Element Method[D]. Nanjing: Nanjing Tech University: 39–82 (in Chinese).
    Bathe K J. 2014. Finite Element Procedures[M]. 2nd ed. USA: Prentice-Hall: 476–480.
    Bottero A, Cristini P, Komatitsch D, Asch M. 2016. An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics[J]. J Acoust Soc Am, 140(5): 3520-3530. doi: 10.1121/1.4965964
    Chan H C, Cai C W, Cheung Y K. 1993. Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix[J]. J Sound Vib, 165(2): 193-207. doi: 10.1006/jsvi.1993.1253
    Craig Jr R R, Kurdila A J. 2006. Fundamentals of Structural Dynamics[M]. 2nd ed. Hoboken, New Jersey: John Wiley & Sons: 400–401.
    Cristini P, Komatitsch D. 2012. Some illustrative examples of the use of a spectral-element method in ocean acoustics[J]. J Acoust Soc Am, 131(3): EL229-EL235. doi: 10.1121/1.3682459
    Dauksher W, Emery A F. 1997. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[J]. Finite Elem Anal Des, 26(2): 115-128. doi: 10.1016/S0168-874X(96)00075-3
    Dauksher W, Emery A F. 1999. An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation[J]. Int J Numer Methods Eng, 45(8): 1099-1113. doi: 10.1002/(SICI)1097-0207(19990720)45:8<1099::AID-NME622>3.0.CO;2-5
    Dauksher W, Emery A F. 2000. The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements[J]. Comput Methods Appl Mech Eng, 188(1/2/3): 217-233.
    Duczek S, Gravenkamp H. 2019a. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods[J]. Comput Methods Appl Mech Eng, 353: 516-569. doi: 10.1016/j.cma.2019.05.016
    Duczek S, Gravenkamp H. 2019b. Critical assessment of different mass lumping schemes for higher order serendipity finite elements[J]. Comput Methods Appl Mech Eng, 350: 836-897. doi: 10.1016/j.cma.2019.03.028
    Fried I, Malkus D S. 1975. Finite element mass matrix lumping by numerical integration with no convergence rate loss[J]. Int J Solids Struct, 11(4): 461-466. doi: 10.1016/0020-7683(75)90081-5
    Hinton E, Rock T, Zienkiewicz O C. 1976. A note on mass lumping and related processes in the finite element method[J]. Earthq Eng Struct Dyn, 4(3): 245-249. doi: 10.1002/eqe.4290040305
    Hughes T J R. 1987. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. Englewood Cliffs, NJ: Prentice-Hall: 436−446.
    Jensen M S. 1996. High convergence order finite elements with lumped mass matrix[J]. Int J Numer Methods Eng, 39(11): 1879-1888. doi: 10.1002/(SICI)1097-0207(19960615)39:11<1879::AID-NME933>3.0.CO;2-2
    Komatitsch D, Vilotte J P. 1998. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seismol Soc Am, 88(2): 368-392.
    Komatitsch D, Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int, 139(3): 806-822. doi: 10.1046/j.1365-246x.1999.00967.x
    Kudela P, Krawczuk M, Ostachowicz W. 2007a. Wave propagation modelling in 1D structures using spectral finite elements[J]. J Sound Vib, 300(1/2): 88-100.
    Kudela P, Żak A, Krawczuk M, Ostachowicz W. 2007b. Modelling of wave propagation in composite plates using the time domain spectral element method[J]. J Sound Vib, 302(4/5): 728-745.
    Patera A T. 1984. A spectral element method for fluid dynamics: Laminar flow in a channel expansion[J]. J Comput Phys, 54(3): 468-488. doi: 10.1016/0021-9991(84)90128-1
    Priolo E, Carcione J M, Seriani G. 1994. Numerical simulation of interface waves by high-order spectral modeling techniques[J]. J Acoust Soc Am, 95(2): 681-693. doi: 10.1121/1.408428
    Tong P, Pian T H H, Bucciarblli L L. 1971. Mode shapes and frequencies by finite element method using consistent and lumped masses[J]. Comput Struct, 1(4): 623-638. doi: 10.1016/0045-7949(71)90033-2
    Wu S R. 2006. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity[J]. Comput Methods Appl Mech Eng, 195(44/47): 5983-5994.
    Yang Y T, Zheng H, Sivaselvan M V. 2017. A rigorous and unified mass lumping scheme for higher-order elements[J]. Comput Methods Appl Mech Eng, 319: 491-514. doi: 10.1016/j.cma.2017.03.011
    Żak A. 2009. A novel formulation of a spectral plate element for wave propagation in isotropic structures[J]. Finite Elem Anal Des, 45(10): 650-658. doi: 10.1016/j.finel.2009.05.002
    Żak A, Krawczuk M, Palacz M, Doliński Ł, Waszkowiak W. 2017. High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method[J]. J Sound Vib, 409: 318-335. doi: 10.1016/j.jsv.2017.07.055
    Żak A, Krawczuk M. 2018. A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures[J]. Finite Elem Anal Des, 142: 17-29. doi: 10.1016/j.finel.2017.12.007
    Zhang G H, Yang Y T, Zheng H. 2019a. A mass lumpig scheme for the second-order numerical manifold method[J]. Comput Struct, 213: 23-39. doi: 10.1016/j.compstruc.2018.12.005
    Zhang G H, Yang Y T, Sun G H, Zheng H. 2019b. A mass lumping scheme for the 10-node tetrahedral element[J]. Eng Anal Bound Elem, 106: 190-200. doi: 10.1016/j.enganabound.2019.04.018
    Zheng H, Yang Y T. 2017. On generation of lumped mass matrices in partition of unity based methods[J]. Int J Numer Methods Eng, 112(8): 1040-1069. doi: 10.1002/nme.5544
    Zhu C Y, Qin G L, Zhang J Z. 2011. Implicit Chebyshev spectral element method for acoustics wave equations[J]. Finite Elem Anal Des, 47(2): 184-194. doi: 10.1016/j.finel.2010.09.004
    Zienkiewicz O C, Taylor R L, Zhu J Z. 2013. The Finite Element Method: Its Basis and Fundamentals[M]. 7th ed. London: Elsevier: 383–386.
  • Cited by

    Periodical cited type(12)

    1. 杨磊,陈双贵,闫万生,张瑜,雷光,杨龙. 南北地震带北段及周边地区岩石圈磁场时空变化特征对地震活动的指示意义. 大地测量与地球动力学. 2024(03): 304-309 .
    2. 宋成科,张鹏涛,陈斌. 基于地磁场重复观测资料分析玛多M_W7.3地震前地磁场变化. 防灾科技学院学报. 2024(01): 38-46 .
    3. 陈政宇,倪喆,周思远,金云华,杨薪俊. 岩石圈磁场与地质构造和地震活动性之间的关系——以漾濞地震为例. 地震地质. 2024(02): 449-461 .
    4. 王朝景,李博,苏树朋. 基于多期累积岩石圈磁场变化分析唐山M_S5.1地震震磁异常. 地震研究. 2024(04): 517-527 .
    5. 李晨阳,池成全. 机器学习在地震观测异常数据提取中的应用. 海南师范大学学报(自然科学版). 2024(03): 348-356 .
    6. 张瑜,陈双贵,闫万生,雷光,杨磊,杨龙,马辉源,肖世堂,董兴洲,岳敏. 甘肃青海部分地区流动地磁场时空分布特征. 大地测量与地球动力学. 2023(01): 65-70 .
    7. 张瑜,陈双贵,马辉源,杨磊,雷光,肖世堂,闫万生,杨龙. 2019—2021年门源M_S6.9地震岩石圈磁场异常回溯分析. 华南地震. 2023(01): 46-54 .
    8. 张瑜,陈双贵,马辉源,闫万生,杨磊,雷光,杨龙,杜建清. 2021年5月22日玛多M_S 7.4地震周边地区岩石圈磁场变化及地震前后异常特征分析. 地震地磁观测与研究. 2023(03): 64-72 .
    9. 张海洋,苏树朋,赵慧琴. 2022年青海门源6.9级地震前岩石圈磁场异常变化分析. 地震工程学报. 2022(03): 735-743 .
    10. 蔡苏苏,陈斌. 中国大陆岩石圈震磁异常年变统计分析. 地震研究. 2022(04): 592-598 .
    11. 马永,张海江,高磊,陈志刚. 2021年玛多Ms7.4地震三维地壳速度结构与活动特征(英文). Applied Geophysics. 2022(04): 590-602+605 .
    12. 文丽敏,康国发,白春华,高国明. 南北地震带南段地壳磁异常与强震活动关系研究(英文). Applied Geophysics. 2021(03): 408-419+434 .

    Other cited types(1)

Catalog

    Article views (375) PDF downloads (41) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return