Citation: | Li H J,Wang J X. 2022. The mass property model and its implementation in the time-domain spectral element method. Acta Seismologica Sinica,44(1):60−75. DOI: 10.11939/jass.20210117 |
丁志华, 周红, 蒋涵. 2014. 三维台阶地形地震动效应研究[J]. 地震学报, 36(2): 184-199 doi: 10.3969/j.issn.0253-3782.2014.02.004
Ding Z H, Zhou H, Jiang H. 2014. Effect of 3-D step topography on ground motion[J]. Acta Seismologica Sinica, 36(2): 184-199 (in Chinese). doi: 10.3969/j.issn.0253-3782.2014.02.004
|
韩天成, 于彦彦, 丁海平. 2020. 直下型断层的破裂速度对盆地地震效应的影响[J]. 地震学报, 42(4): 457-470 doi: 10.11939/jass.20190177
Han T C, Yu Y Y, Ding H P. 2020. Influence of rupture velocity of the directly-beneath fault on the basin seismic effect[J]. Acta Seismologica Sinica, 42(4): 457-470 (in Chinese). doi: 10.11939/jass.20190177
|
廖振鹏. 2002. 工程波动理论导论[M]. 第2版. 北京: 科学出版社: 59–63
Liao Z P. 2002. Introduction to Wave Motion Theories in Engineering[M]. 2nd ed. Beijing: Science Press: 59–63 (in Chinese).
|
王勖成. 2003. 有限单元法[M]. 北京: 清华大学出版社: 472–475
Wang X C. 2003. Finite Element Method[M]. Beijing: Tsinghua University Press: 472–475 (in Chinese).
|
邢浩洁. 2017. 透射边界机理及其在地震波动谱元模拟中的应用[D]. 南京: 南京工业大学: 39–82
Xing H J. 2017. Mechanism of Transmitting Boundary and Its Application to Seismic Wave Simulation With Spectral Element Method[D]. Nanjing: Nanjing Tech University: 39–82 (in Chinese).
|
Bathe K J. 2014. Finite Element Procedures[M]. 2nd ed. USA: Prentice-Hall: 476–480.
|
Bottero A, Cristini P, Komatitsch D, Asch M. 2016. An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics[J]. J Acoust Soc Am, 140(5): 3520-3530. doi: 10.1121/1.4965964
|
Chan H C, Cai C W, Cheung Y K. 1993. Convergence studies of dynamic analysis by using the finite element method with lumped mass matrix[J]. J Sound Vib, 165(2): 193-207. doi: 10.1006/jsvi.1993.1253
|
Craig Jr R R, Kurdila A J. 2006. Fundamentals of Structural Dynamics[M]. 2nd ed. Hoboken, New Jersey: John Wiley & Sons: 400–401.
|
Cristini P, Komatitsch D. 2012. Some illustrative examples of the use of a spectral-element method in ocean acoustics[J]. J Acoust Soc Am, 131(3): EL229-EL235. doi: 10.1121/1.3682459
|
Dauksher W, Emery A F. 1997. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[J]. Finite Elem Anal Des, 26(2): 115-128. doi: 10.1016/S0168-874X(96)00075-3
|
Dauksher W, Emery A F. 1999. An evaluation of the cost effectiveness of Chebyshev spectral and p-finite element solutions to the scalar wave equation[J]. Int J Numer Methods Eng, 45(8): 1099-1113. doi: 10.1002/(SICI)1097-0207(19990720)45:8<1099::AID-NME622>3.0.CO;2-5
|
Dauksher W, Emery A F. 2000. The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements[J]. Comput Methods Appl Mech Eng, 188(1/2/3): 217-233.
|
Duczek S, Gravenkamp H. 2019a. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods[J]. Comput Methods Appl Mech Eng, 353: 516-569. doi: 10.1016/j.cma.2019.05.016
|
Duczek S, Gravenkamp H. 2019b. Critical assessment of different mass lumping schemes for higher order serendipity finite elements[J]. Comput Methods Appl Mech Eng, 350: 836-897. doi: 10.1016/j.cma.2019.03.028
|
Fried I, Malkus D S. 1975. Finite element mass matrix lumping by numerical integration with no convergence rate loss[J]. Int J Solids Struct, 11(4): 461-466. doi: 10.1016/0020-7683(75)90081-5
|
Hinton E, Rock T, Zienkiewicz O C. 1976. A note on mass lumping and related processes in the finite element method[J]. Earthq Eng Struct Dyn, 4(3): 245-249. doi: 10.1002/eqe.4290040305
|
Hughes T J R. 1987. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis[M]. Englewood Cliffs, NJ: Prentice-Hall: 436−446.
|
Jensen M S. 1996. High convergence order finite elements with lumped mass matrix[J]. Int J Numer Methods Eng, 39(11): 1879-1888. doi: 10.1002/(SICI)1097-0207(19960615)39:11<1879::AID-NME933>3.0.CO;2-2
|
Komatitsch D, Vilotte J P. 1998. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seismol Soc Am, 88(2): 368-392.
|
Komatitsch D, Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int, 139(3): 806-822. doi: 10.1046/j.1365-246x.1999.00967.x
|
Kudela P, Krawczuk M, Ostachowicz W. 2007a. Wave propagation modelling in 1D structures using spectral finite elements[J]. J Sound Vib, 300(1/2): 88-100.
|
Kudela P, Żak A, Krawczuk M, Ostachowicz W. 2007b. Modelling of wave propagation in composite plates using the time domain spectral element method[J]. J Sound Vib, 302(4/5): 728-745.
|
Patera A T. 1984. A spectral element method for fluid dynamics: Laminar flow in a channel expansion[J]. J Comput Phys, 54(3): 468-488. doi: 10.1016/0021-9991(84)90128-1
|
Priolo E, Carcione J M, Seriani G. 1994. Numerical simulation of interface waves by high-order spectral modeling techniques[J]. J Acoust Soc Am, 95(2): 681-693. doi: 10.1121/1.408428
|
Tong P, Pian T H H, Bucciarblli L L. 1971. Mode shapes and frequencies by finite element method using consistent and lumped masses[J]. Comput Struct, 1(4): 623-638. doi: 10.1016/0045-7949(71)90033-2
|
Wu S R. 2006. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity[J]. Comput Methods Appl Mech Eng, 195(44/47): 5983-5994.
|
Yang Y T, Zheng H, Sivaselvan M V. 2017. A rigorous and unified mass lumping scheme for higher-order elements[J]. Comput Methods Appl Mech Eng, 319: 491-514. doi: 10.1016/j.cma.2017.03.011
|
Żak A. 2009. A novel formulation of a spectral plate element for wave propagation in isotropic structures[J]. Finite Elem Anal Des, 45(10): 650-658. doi: 10.1016/j.finel.2009.05.002
|
Żak A, Krawczuk M, Palacz M, Doliński Ł, Waszkowiak W. 2017. High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method[J]. J Sound Vib, 409: 318-335. doi: 10.1016/j.jsv.2017.07.055
|
Żak A, Krawczuk M. 2018. A higher order transversely deformable shell-type spectral finite element for dynamic analysis of isotropic structures[J]. Finite Elem Anal Des, 142: 17-29. doi: 10.1016/j.finel.2017.12.007
|
Zhang G H, Yang Y T, Zheng H. 2019a. A mass lumpig scheme for the second-order numerical manifold method[J]. Comput Struct, 213: 23-39. doi: 10.1016/j.compstruc.2018.12.005
|
Zhang G H, Yang Y T, Sun G H, Zheng H. 2019b. A mass lumping scheme for the 10-node tetrahedral element[J]. Eng Anal Bound Elem, 106: 190-200. doi: 10.1016/j.enganabound.2019.04.018
|
Zheng H, Yang Y T. 2017. On generation of lumped mass matrices in partition of unity based methods[J]. Int J Numer Methods Eng, 112(8): 1040-1069. doi: 10.1002/nme.5544
|
Zhu C Y, Qin G L, Zhang J Z. 2011. Implicit Chebyshev spectral element method for acoustics wave equations[J]. Finite Elem Anal Des, 47(2): 184-194. doi: 10.1016/j.finel.2010.09.004
|
Zienkiewicz O C, Taylor R L, Zhu J Z. 2013. The Finite Element Method: Its Basis and Fundamentals[M]. 7th ed. London: Elsevier: 383–386.
|