Sun W K,Fu G Y,Zhou X,Xu C Y,Tang H,Dong J,Zhou J C,Yang J Y,Wang W X,Liu T. 2022. Seismic dislocation theory of spherical Earth model and its application. Acta Seismologica Sinica44(4):711−731. DOI: 10.11939/jass.20210134
Citation: Sun W K,Fu G Y,Zhou X,Xu C Y,Tang H,Dong J,Zhou J C,Yang J Y,Wang W X,Liu T. 2022. Seismic dislocation theory of spherical Earth model and its application. Acta Seismologica Sinica44(4):711−731. DOI: 10.11939/jass.20210134

Seismic dislocation theory of spherical Earth model and its application

More Information
  • Received Date: August 09, 2021
  • Revised Date: December 07, 2021
  • Available Online: April 19, 2022
  • Published Date: August 15, 2022
  • Seismic dislocation theory is the theory of studying the relationship between seismic fault slip and geophysical field change, and also it is the link between the source mechanism, the internal structure of the Earth, earthquake forecasting and other basic geophysical problems and geodetic-geophysical observation. The widely used dislocation theory of the semi-infinite medium model, due to the limitation of its geometric attribute, will riskily result in a certain degree of oversight and even fault in the application of seismic deformation and geodynamics analysis. In addition, modern geodesy technology can accurately observe seismic deformation on global and regional scales, and a suitable seismic dislocation theory born for global seismic deformation study is urgently required. For this purpose, our team has developed a new system of seismic dislocation theory based on the spherical Earth model through many years of systematic research. The establishment of such theory has promoted the study of global seismic deformation and geodynamic process, and expanded the study of earthquake-induced global geodynamic changes. This informative article briefly introduces the domestic development and application of seismic dislocation theory of spherical Earth model. The first section introduces the dislocation theory of elastic spherical Earth model, three-dimensional inhomogeneous Earth model and viscoelastic Earth model. The second section introduces the relevant applications of the dislocation theory of spherical Earth model in geodynamic change, fault and underground structure inversion and others in seismological geodesy. The seismic dislocation theory of the spherical Earth model has promoted the study of global seismic deformation and geodynamic changes. It is one of the important theoretical advances in the field of geophysics in recent years.
  • 陈飞,刘泰,付广裕,佘雅文. 2020. 震后GPS观测数据揭示的日本MW9.0地震周边地区地幔黏滞性结构垂向变化[J]. 地球物理学报,63(6):2210–2220. doi: 10.6038/cjg2020N0170
    Chen F,Liu T,Fu G Y,She Y W. 2020. Variation of the mantle viscosity around the Tohoku-Oki MW9.0 earthquake revealed by post-seismic GPS data[J]. Chinese Journal of Geophysics,63(6):2210–2220 (in Chinese).
    陈俊勇. 2003. 现代大地测量学的进展[J]. 测绘科学,28(2):1–5. doi: 10.3771/j.issn.1009-2307.2003.02.001
    Chen J Y. 2003. On the development of modern geodesy[J]. Science of Surveying and Mapping,28(2):1–5 (in Chinese).
    陈运泰,林邦慧,林中洋,李志勇. 1975. 根据地面形变的观测研究1966年邢台地震的震源过程[J]. 地球物理学报,18(3):164–182.
    Chen Y T,Lin B H,Lin Z Y,Li Z Y. 1975. The focal mechanism of the 1966 Hsingtai ( 邢台) earthquake as inferred from the ground deformation observations[J]. Acta Geophysica Sinica,18(3):164–182 (in Chinese).

    Chen Y T, Lin B H, Lin Z Y, Li Z Y. 1975. The focal mechanism of the 1966 Hsingtai (邢台) earthquake as inferred from the ground deformation observations[J]. Acta Geophysica Sinica, 18(3): 164-182 (in Chinese).
    陈运泰,林邦慧,王新华,黄立人,刘妙龙. 1979. 用大地测量资料反演的1976年唐山地震的位错模式[J]. 地球物理学报,22(3):201–217. doi: 10.3321/j.issn:0001-5733.1979.03.001
    Chen Y T,Lin B H,Wang X H,Huang L R,Liu M L. 1979. A dislocation model of the Tangshan (唐山) earthquake of 1976 from the inversion of geodetic data[J]. Acta Geophysica Sinica,22(3):201–217 (in Chinese).

    Chen Y T, Lin B H, Wang X H, Huang L R, Liu M L. 1979. A dislocation model of the Tangshan (唐山) earthquake of 1976 from the inversion of geodetic data [J]. Acta Geophysica Sinica, 22(3): 201-217 (in Chinese).
    付广裕,孙文科. 2012a. 地球横向不均匀结构对地表以及空间固定点同震重力变化的影响[J]. 地球物理学报,55(8):2728–2746.
    Fu G Y,Sun W K. 2012a. Effects of earth’s lateral heterogeneity on co-seismic gravity changes at deformed earth surface and space-fixed point[J]. Chinese Journal of Geophysics,55(8):2728–2746 (in Chinese).
    付广裕,孙文科. 2012b. 球体位错理论计算程序的总体设计与具体实现[J]. 地震,32(2):73–87.
    Fu G Y,Sun W K. 2012b. Overall design and specific structures of the computing codes for coseismic deformations on a layered spherical earth[J]. Earthquake,32(2):73–87 (in Chinese).
    胡明城. 2000. 现代大地测量学[J]. 测绘通报,(5):3. doi: 10.3969/j.issn.0494-0911.2000.05.021
    Hu M C. 2000. Modern geodesy[J]. Bulletin of Surveying and Mapping,(5):3 (in Chinese).
    李建成,宁津生,晁定波,姜卫平. 2006. 卫星测高在大地测量学中的应用及进展[J]. 测绘科学,31(6):19–23. doi: 10.3771/j.issn.1009-2307.2006.06.003
    Li J C,Ning J S,Chao D B,Jiang W P. 2006. The applications and progress of satellite altimetry in geodesy[J]. Science of Surveying and Mapping,31(6):19–23 (in Chinese).
    梁明,王武星,张晶. 2018. 联合GPS和GRACE观测研究日本MW9.0地震震后变形机制[J]. 地球物理学报,61(7):2691–2704. doi: 10.6038/cjg2018L0356
    Liang M,Wang W X,Zhang J. 2018. Post-seismic deformation mechanism of the MW9.0 Tohoku-Oki earthquake detected by GPS and GRACE observations[J]. Chinese Journal of Geophysics,61(7):2691–2704 (in Chinese).
    林晓光,孙文科. 2014. 地形效应和局部地质构造对计算同震形变的影响:以2011年日本东北大地震(MW9.0)为例[J]. 地球物理学报,57(8):2530–2540. doi: 10.6038/cjg20140814
    Lin X G,Sun W K. 2014. Effects of topography and local geological structure on computing co-seismic deformation:A case study of the 2011 Japan Tohoku earthquake (MW9.0)[J]. Chinese Journal of Geophysics,57(8):2530–2540 (in Chinese).
    刘泰,付广裕,周新,苏小宁. 2017. 2011年日本MW9.0地震震后形变机制与震源区总体构造特征[J]. 地球物理学报,60(9):3406–3417. doi: 10.6038/cjg20170911
    Liu T,Fu G Y,Zhou X,Su X N. 2017. Mechanism of post-seismic deformations following the 2011 Tohoku-Oki MW9.0 earthquake and general structure of lithosphere around the source[J]. Chinese Journal of Geophysics,60(9):3406–3417 (in Chinese).
    刘泰,付广裕,邹镇宇. 2019. 2004年苏门答腊地震粘滞性松弛效应对华南地区地壳水平活动的影响[J]. 地震,39(2):37–45. doi: 10.3969/j.issn.1000-3274.2019.02.005
    Liu T,Fu G Y,Zou Z Y. 2019. Effect of viscoelastic relaxation following the 2004 Sumatra earthquake on horizontal crustal movement in South China[J]. Earthquake,39(2):37–45 (in Chinese).
    孙文科. 1989. 空间大地测量技术在板块构造及地壳形变中的应用[J]. 地球物理学报,32(3):339–346. doi: 10.3321/j.issn:0001-5733.1989.03.010
    Sun W K. 1989. Applications of spatial geodetic in plate structure and crust deformation[J]. Acta Geophysica Sinica,32(3):339–346 (in Chinese).
    孙文科. 2002. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场:卫星重力大地测量的最新发展及其对地球科学的重大影响[J]. 大地测量与地球动力学,22(1):92–100.
    Sun W K. 2002. Satellite in low orbit (CHAMP,GRACE,GOCE) and high precision earth gravity field:The latest progress of satellite gravity geodesy and its great influence on geoscience[J]. Journal of Geodesy and Geodynamics,22(1):92–100 (in Chinese).
    孙文科. 2012a. 地震位错理论[M]. 北京: 科学出版社: 14–56.
    Sun W K. 2012a. Seismic Dislocation Theory[M]. Beijing: Science Press: 14–56 (in Chinese).
    孙文科. 2012b. 地震位错理论在地震学研究中的作用与存在的问题[J]. 国际地震动态,(6):17.
    Sun W K. 2012b. Application of dislocation theories in seismological study and existing problems[J]. Recent Developments in World Seismology,(6):17 (in Chinese).
    唐河,孙文科. 2021. 黏弹地球地震变形理论研究进展和展望[J]. 地球与行星物理论评,52(1):11–26.
    Tang H,Sun W K. 2021. Progress and prospect of deformation theory in the viscoelastic earth[J]. Reviews of Geophysics and Planetary Physics,52(1):11–26 (in Chinese).
    汪汉胜,李国营,许厚泽. 1997. SNRVEI地球模型连续分布的简正模及其意义[J]. 地球物理学报,40(1):78–84. doi: 10.3321/j.issn:0001-5733.1997.01.009
    Wang H S,Li G Y,Xu H Z. 1997. Continuously distributed modes of SNRVEI earth model and their effects[J]. Acta Geophysica Sinica,40(1):78–84 (in Chinese).
    许厚泽,王广运. 1989. 动力大地测量学:研究地球动态变化的新学科[J]. 地球科学进展,4(4):9–15.
    Xu H Z,Wang G Y. 1989. Dynamic geodesy:A new discipline for studying the dynamic changes of the earth[J]. Advances in Earth Science,4(4):9–15 (in Chinese).
    杨君妍,孙文科. 2020. 利用大地测量数据反演地震位错Love数和格林函数的理论与方法[J]. 地球物理学报,63(8):2912–2923. doi: 10.6038/cjg2020N0356
    Yang J Y,Sun W K. 2020. The theory and method of determining dislocation Love number and Green’s function using geodetic data[J]. Chinese Journal of Geophysics,63(8):2912–2923 (in Chinese).
    姚宜斌,杨元喜,孙和平,李建成. 2020. 大地测量学科发展现状与趋势[J]. 测绘学报,49(10):1243–1251. doi: 10.11947/j.AGCS.2020.20200358
    Yao Y B,Yang Y X,Sun H P,Li J C. 2020. Geodesy discipline:Progress and perspective[J]. Acta Geodaetica et Cartographica Sinica,49(10):1243–1251 (in Chinese).
    张国庆,付广裕,周新,徐长仪. 2015. 利用震后黏弹性位错理论研究苏门答腊地震(MW9.3)的震后重力变化[J]. 地球物理学报,58(5):1654–1665. doi: 10.6038/cjg20150517
    Zhang G Q,Fu G Y,Zhou X,Xu C Y. 2015. Retrieve post-seismic gravity changes induced by Sumatra earthquake (MW9.3) based on the viscoelastic dislocation theory[J]. Chinese Journal of Geophysics,58(5):1654–1665 (in Chinese).
    张岚,孙文科. 2022. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评,53(1):35–52.
    Zhang L,Sun W K. 2022. Progress and prospect of GRACE Mascon product and its application[J]. Reviews of Geophysics and Planetary Physics,53(1):35–52 (in Chinese).
    周江存,孙和平,徐建桥,崔小明,陈晓东. 2017. 重力位能同震变化及其构造意义:以青藏高原地区为例[J]. 地球物理学报,60(6):2493–2499. doi: 10.6038/cjg20170636
    Zhou J C,Sun H P,Xu J Q,Cui X M,Chen X D. 2017. Co-seismic change of gravitational potential energy and its tectonic implications:A case study of the Tibetan Plateau[J]. Chinese Journal of Geophysics,60(6):2493–2499 (in Chinese).
    周硕愚,吴云,姚运生,杜瑞林. 2008. 地震大地测量学研究[J]. 大地测量与地球动力学,28(6):77–82.
    Zhou S Y,Wu Y,Yao Y S,Du R L. 2008. Research of earthquake geodesy[J]. Journal of Geodesy and Geodynamics,28(6):77–82 (in Chinese).
    周硕愚,吴云,江在森. 2017. 地震大地测量学及其对地震预测的促进:50年进展、问题与创新驱动[J]. 大地测量与地球动力学,37(6):551–562.
    Zhou S Y,Wu Y,Jiang Z S. 2017. Earthquake geodesy and earthquake prediction:Progress,innovations and problems over fifty years[J]. Journal of Geodesy and Geodynamics,37(6):551–562 (in Chinese).
    周新. 2017. 利用大地测量数据反演断层滑移分布的MCMC方法[J]. 大地测量与地球动力学,37(10):996–1002.
    Zhou X. 2017. Markov Chain Monte Carlo method used to invert for fault slip from geodetic data[J]. Journal of Geodesy and Geodynamics,37(10):996–1002 (in Chinese).
    周新,万晓云,申旭辉. 2018. 主喜马拉雅逆冲带的震间与同震重力场变化[J]. 遥感学报,22(增刊1):100–113.
    Zhou X,Wang X Y,Shen X H. 2018. Coseismic and interseismic gravity field change along the Main Himalaya Thrust[J]. Journal of Remote Sensing,22(S1):100–113 (in Chinese).
    Abidin H Z,Andreas H,Kato T,Ito T,Meilano I,Kimata F,Natawidjaya D H,Harjono H. 2009. Crustal deformation studies in Java (Indonesia) using GPS[J]. J Earthq Tsunami,3(2):77–88. doi: 10.1142/S1793431109000445
    Adam D. 2002. Amazing GRACE[J]. Nature,416(6876):10–11. doi: 10.1038/416010a
    Aki K. 1964. Study of Love and Rayleigh waves from earthquakes with fault plane solutions or with known faulting. Part 1. A phase difference method based on a new model of earthquake source[J]. Bull Seismol Soc Am,54(2):511–527. doi: 10.1785/BSSA0540020511
    Allen R M,Ziv A. 2011. Application of real-time GPS to earthquake early warning[J]. Geophys Res Lett,38(16):L16310.
    Alterman Z,Jarosch H,Pekeris C L. 1959. Oscillations of the earth[J]. Proc R Soc Lond A:Math Phys Sci,252(1268):80–95.
    Amoruso A,Crescentini L. 2009. Slow diffusive fault slip propagation following the 6 April 2009 L’Aquila earthquake,Italy[J]. Geophys Res Lett,36(24):L24306. doi: 10.1029/2009GL041503
    Anderson D L. 1974. Earthquakes and the rotation of the Earth[J]. Science,186(4158):49–50. doi: 10.1126/science.186.4158.49
    Anderson D L,O’Connell R. 1967. Viscosity of the Earth[J]. Geophys J Int,14(1/2/3/4):287–295.
    Argus D F,Peltier W R,Blewitt G,Kreemer C. 2021. The viscosity of the top third of the lower mantle estimated using GPS,GRACE,and relative sea level measurements of glacial isostatic adjustment[J]. J Geophys Res:Solid Earth,126(5):e2020JB021537.
    Ben-Menahem A,Toksöz M N. 1962. Source-mechanism from spectra of long-period seismic surface-waves:1. The Mongolian earthquake of December 4,1957[J]. J Geophys Res,67(5):1943–1955. doi: 10.1029/JZ067i005p01943
    Ben-Menahem A,Singh S J. 1968. Multipolar elastic fields in a layered half space[J]. Bull Seismol Soc Am,58(5):1519–1572. doi: 10.1785/BSSA0580051519
    Beresnev I A. 2003. Uncertainties in finite-fault slip inversions:To what extent to believe?(a critical review)[J]. Bull Seismol Soc Am,93(6):2445–2458. doi: 10.1785/0120020225
    Biggs J,Wright T J. 2020. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade[J]. Nat Commun,11(1):3863. doi: 10.1038/s41467-020-17587-6
    Bock Y,Melgar D. 2016. Physical applications of GPS geodesy:A review[J]. Rep Prog Phys,79(10):106801. doi: 10.1088/0034-4885/79/10/106801
    Braitenberg C. 2018. The deforming and rotating Earth:A review of the 18th International Symposium on Geodynamics and Earth Tide,Trieste 2016[J]. Geod Geodyn,9(3):187–196. doi: 10.1016/j.geog.2018.03.003
    Cambiotti G,Barletta V R,Bordoni A,Sabadini R. 2009. A comparative analysis of the solutions for a Maxwell Earth:The role of the advection and buoyancy force[J]. Geophys J Int,176(3):995–1006. doi: 10.1111/j.1365-246X.2008.04034.x
    Cambiotti G. 2020. Joint estimate of the coseismic 2011 Tohoku earthquake fault slip and post-seismic viscoelastic relaxation by GRACE data inversion[J]. Geophys J Int,220(2):1012–1022.
    Cathles L M. 1975. Viscosity of the Earths Mantle[M]. Princeton: Princeton University Press: 267.
    Chao B F. 2003. Geodesy is not just for static measurements any more[J]. Eos,Trans AGU,84(16):145–150.
    Chao B F,Gross R S. 1987. Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes[J]. Geophys J Int,91(3):569–596. doi: 10.1111/j.1365-246X.1987.tb01659.x
    Chen C H,Yeh T K,Liu J Y,Wang C H,Wen S,Yen H Y,Chang S H. 2011. Surface deformation and seismic rebound:Implications and applications[J]. Surv Geophys,32(3):291–313. doi: 10.1007/s10712-011-9117-3
    Cheng H H,Zhang B,Huang L Y,Zhang H,Shi Y L. 2019. Calculating coseismic deformation and stress changes in a heterogeneous ellipsoid earth model[J]. Geophys J Int,216(2):851–858. doi: 10.1093/gji/ggy444
    Chinnery M A. 1961. The deformation of the ground around surface faults[J]. Bull Seismol Soc Am,51(3):355–372. doi: 10.1785/BSSA0510030355
    Cornelio C,Violay M. 2020. Effect of fluid viscosity on earthquake nucleation[J]. Geophys Res Lett,47(12):e2020GL087854.
    Dahlen F A. 1968. The normal modes of a rotating,elliptical Earth[J]. Geophys J Int,16(4):329–367. doi: 10.1111/j.1365-246X.1968.tb00229.x
    Dahlen F A. 1974. On the static deformation of an Earth model with a fluid core[J]. Geophys J Int,36(2):461–485. doi: 10.1111/j.1365-246X.1974.tb03649.x
    Dahlen F A. 1977. The balance of energy in earthquake faulting[J]. Geophys J Int,48(2):239–261. doi: 10.1111/j.1365-246X.1977.tb01298.x
    Dai C L,Shum C K,Wang R J,Wang L,Guo J Y,Shang K,Tapley B. 2014. Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes[J]. Geophys Res Lett,41(6):1929–1936. doi: 10.1002/2013GL059178
    Diao F Q,Wang R J,Wang Y B,Xiong X,Walter T R. 2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake[J]. Earth Planet Sci Lett,495:202–212. doi: 10.1016/j.jpgl.2018.05.020
    Diao F Q,Xiong X,Wang R J,Walter T R,Wang Y B,Wang K. 2019. Slip rate variation along the Kunlun fault (Tibet):Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophys Res Lett,46(5):2524–2533. doi: 10.1029/2019GL081940
    Dong J,Sun W K,Zhou X,Wang R J. 2014. Effects of Earth’s layered structure,gravity and curvature on coseismic deformation[J]. Geophys J Int,199(3):1442–1451. doi: 10.1093/gji/ggu342
    Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet Inter,25(4):297–356. doi: 10.1016/0031-9201(81)90046-7
    Fang M,Hager B H. 1996. The sensitivity of post-glacial sea level to viscosity structure and ice-load history for realistically parameterized viscosity profiles[J]. Geophys Res Lett,23(25):3787–3790. doi: 10.1029/96GL03622
    Fernández J,Pepe A,Poland M P,Sigmundsson F. 2017. Volcano geodesy:Recent developments and future challenges[J]. J Volcanol Geoth Res,344:1–12. doi: 10.1016/j.jvolgeores.2017.08.006
    Forte A M,Peltier W R,Dziewonski A M. 1991. Inferences of mantle viscosity from tectonic plate velocities[J]. Geophys Res Lett,18(9):1747–1750. doi: 10.1029/91GL01726
    Freed A M,Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle[J]. Nature,430(6999):548–551. doi: 10.1038/nature02784
    Freed A M,Hashima A,Becker T W,Okaya D A,Sato H,Hatanaka Y. 2017. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-Oki,Japan earthquake[J]. Earth Planet Sci Lett,459:279–290. doi: 10.1016/j.jpgl.2016.11.040
    Freymueller J T. 2021. GPS, tectonic geodesy[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 558–578.
    Fu G Y,Sun W K. 2006. Global co-seismic displacements caused by the 2004 Sumatra-Andaman earthquake (MW9.1)[J]. Earth Planets Space,58(2):149–152. doi: 10.1186/BF03353371
    Fu G Y,Sun W K. 2007. Effects of lateral inhomogeneity in a spherical Earth on gravity Earth tides[J]. J Geophys Res:Solid Earth,112(B6):B06409.
    Fu G Y,Sun W K. 2008. Surface coseismic gravity changes caused by dislocations in a 3-D heterogeneous earth[J]. Geophys J Int,172(2):479–503. doi: 10.1111/j.1365-246X.2007.03684.x
    Fu G Y,Sun W K. 2009. Effects of Earth’s lateral inhomogeneous structures on coseismic gravity changes[J]. Pure Appl Geophys,166(8):1343–1368.
    Fu G Y,Sun W K,Fukuda Y,Gao S H. 2010. Coseismic displacements caused by point dislocations in a three-dimensional heterogeneous,spherical earth model[J]. Geophys J Int,183(2):706–726. doi: 10.1111/j.1365-246X.2010.04757.x
    Gautam P K,Rajesh S,Kumar N,Dabral C P. 2020. GPS measurements on pre-,co- and post-seismic surface deformation at first multi-parametric geophysical observatory,Ghuttu in Garhwal Himalaya,India[J]. J Geod Sci,10(1):136–144. doi: 10.1515/jogs-2020-0114
    Gilbert F,MacDonald G J F. 1960. Free oscillations of the Earth:1. Toroidal oscillations[J]. J Geophys Res,65(2):675–693. doi: 10.1029/JZ065i002p00675
    Gilbert F,Backus G E. 1966. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,31(2):326–332. doi: 10.1190/1.1439771
    Gilbert F, Backus G E. 1968. Elastic-gravitational vibrations of a radially stratified sphere[G]//Dynamics of Stratified Solids. New York: American Society of Mechanical Engineers: 82–95.
    Gilbert F,Dziewonski A M. 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J]. Philos Trans R Soc Lond A:Math Phys Eng Sci,278(1280):187–269.
    Giorgi G,Schmidt T D,Trainotti C,Mata-Calvo R,Fuchs C,Hoque M M,Berdermann J,Furthner J,Günther C,Schuldt T,Sanjuan J,Gohlke M,Oswald M,Braxmaier C,Balidakis K,Dick G,Flechtner F,Ge M,Glaser S,König R,Michalak G,Murböck M,Semmling M,Schuh H. 2019. Advanced technologies for satellite navigation and geodesy[J]. Adv Space Res,64(6):1256–1273. doi: 10.1016/j.asr.2019.06.010
    Glennie C L,Carter W E,Shrestha R L,Dietrich W E. 2013. Geodetic imaging with airborne LiDAR:The Earth’s surface revealed[J]. Rep Prog Phys,76(8):086801. doi: 10.1088/0034-4885/76/8/086801
    Gómez D D,Bevis M,Pan E N,Smalley R. 2017. The influence of gravity on the displacement field produced by fault slip[J]. Geophys Res Lett,44(18):9321–9329. doi: 10.1002/2017GL074113
    Han S C,Shum C K,Bevis M,Ji C,Kuo C Y. 2006. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake[J]. Science,313(5787):658–662. doi: 10.1126/science.1128661
    Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    Herring T A,Melbourne T I,Murray M H,Floyd M A,Szeliga W M,King R W,Phillips D A,Puskas C M,Santillan M,Wang L. 2016. Plate boundary observatory and related networks:GPS data analysis methods and geodetic products[J]. Rev Geophys,54(4):759–808. doi: 10.1002/2016RG000529
    Hu Y,Wang K L,He J H,Klotz J,Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res:Solid Earth,109:B12403. doi: 10.1029/2004JB003163
    Ide S. 2007. Slip inversion[G]//Earthquake Seismology: Treatise on Geophysics Volume 4. Amsterdam: Elsevier: 193–223.
    Imanishi Y,Sato T,Higashi T,Sun W K,Okubo S. 2004. A network of superconducting gravimeters detects submicrogal coseismic gravity changes[J]. Science,306(5695):476–478. doi: 10.1126/science.1101875
    Israel M,Ben-Menahem A. 1974. Residual displacements and strains due to faulting in real Earth models[J]. Phys Earth Planet Inter,8(1):23–45. doi: 10.1016/0031-9201(74)90107-1
    Ito T,Simons M. 2011. Probing asthenospheric density,temperature,and elastic moduli below the western United States[J]. Science,332(6032):947–951. doi: 10.1126/science.1202584
    Jiang Z S,Wang M,Wang Y Z,Wu Y Q,Che S,Shen Z K,Bürgmann R,Sun J B,Yang Y L,Liao H,Li Q. 2014. GPS constrained coseismic source and slip distribution of the 2013 MW6.6 Lushan,China,earthquake and its tectonic implications[J]. Geophys Res Lett,41(2):407–413. doi: 10.1002/2013GL058812
    Jovanovich D B,Husseini M I,Chinnery M A. 1974a. Elastic dislocations in a layered half-space: Ⅰ . Basic theory and numerical methods[J]. Geophys J Int,39(2):205–217. doi: 10.1111/j.1365-246X.1974.tb05451.x
    Jovanovich D B,Husseini M I,Chinnery M A. 1974b. Elastic dislocations in a layered half-space: Ⅱ . The point source[J]. Geophys J Int,39(2):219–239. doi: 10.1111/j.1365-246X.1974.tb05452.x
    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    Krynski J. 2012. Gravimetry for geodesy and geodynamics-brief historical review[J]. Rep Geod,92(1):69–86.
    Larson K M. 2019. Unanticipated uses of the global positioning system[J]. Annu Rev Earth Planet Sci,47(1):19–40. doi: 10.1146/annurev-earth-053018-060203
    Li X X,Ge M R,Dai X L,Ren X D,Fritsche M,Wickert J,Schuh H. 2015. Accuracy and reliability of multi-GNSS real-time precise positioning:GPS,GLONASS,BeiDou,and Galileo[J]. J Geod,89(6):607–635. doi: 10.1007/s00190-015-0802-8
    Love A E H. 1911. Some Problems of Geodynamics[M]. Cambridge: Cambridge University Press: 102–118.
    Ma X Q,Kusznir N J. 1992. 3-D subsurface displacement and strain fields for faults and fault arrays in a layered elastic half-space[J]. Geophys J Int,111(3):542–558. doi: 10.1111/j.1365-246X.1992.tb02111.x
    Marchandon M,Hollingsworth J,Radiguet M. 2021. Origin of the shallow slip deficit on a strike slip fault:Influence of elastic structure,topography,data coverage,and noise[J]. Earth Planet Sci Lett,554:116696. doi: 10.1016/j.jpgl.2020.116696
    Marotta A M. 2003. Benefits from GOCE within solid Earth geophysics[J]. Space Sci Rev,108:95–104. doi: 10.1023/A:1026273832697
    Maruyama T. 1964. Statical elastic dislocations in an infinite and semi-infinite medium[J]. Bull Earthq Res Inst Univ Tokyo,42:289–368.
    Masterlark T. 2003. Finite element model predictions of static deformation from dislocation sources in a subduction zone:Sensitivities to homogeneous,isotropic,Poisson-solid,and half-space assumptions[J]. J Geophys Res:Solid Earth,108(B11):2540. doi: 10.1029/2002JB002296
    Matsuo K,Heki K. 2011. Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry[J]. Geophys Res Lett,38(7):L00G12.
    Meigs A. 2013. Active tectonics and the LiDAR revolution[J]. Lithosphere,5(2):226–229. doi: 10.1130/RF.L004.1
    Melini D,Cannelli V,Piersanti A,Spada G. 2008. Post-seismic rebound of a spherical Earth:New insights from the application of the Post-Widder inversion formula[J]. Geophys J Int,174(2):672–695. doi: 10.1111/j.1365-246X.2008.03847.x
    Mindlin R D,Cheng D H. 1950. Nuclei of strain in the semi-infinite solid[J]. J Appl Phys,21(9):926–930. doi: 10.1063/1.1699785
    Molodenskiy S M. 1980. The effect of lateral heterogeneities upon the tides[J]. BIM Fevrier,80:4833–4850.
    Ni S D,Kanamori H,Helmberger D. 2005. Energy radiation from the Sumatra earthquake[J]. Nature,434(7033):582. doi: 10.1038/434582a
    Nur A,Mavko G. 1974. Postseismic viscoelastic rebound[J]. Science,183(4121):204–206. doi: 10.1126/science.183.4121.204
    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,75(4):1135–1154. doi: 10.1785/BSSA0750041135
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040. doi: 10.1785/BSSA0820021018
    Okubo S. 1991. Potential and gravity changes raised by point dislocations[J]. Geophys J Int,105(3):573–586. doi: 10.1111/j.1365-246X.1991.tb00797.x
    Okubo S. 1992. Gravity and potential changes due to shear and tensile faults in a half-space[J]. J Geophys Res:Solid Earth,97(B5):7137–7144. doi: 10.1029/92JB00178
    Okubo S. 1993. Reciprocity theorem to compute the static deformation due to a point dislocation buried in a spherically symmetric Earth[J]. Geophys J Int,115(3):921–928. doi: 10.1111/j.1365-246X.1993.tb01501.x
    Okubo S. 2020. Advances in gravity analyses for studying volcanoes and earthquakes[J]. Proc Jpn Acad Ser B:Phys Biol Sci,96(2):50–69. doi: 10.2183/pjab.96.005
    Pan E N. 2019. Green’s functions for geophysics:A review[J]. Rep Prog Phys,82(10):106801. doi: 10.1088/1361-6633/ab1877
    Panet I,Mikhailov V,Diament M,Pollitz F,King G,De Viron O,Holschneider M,Biancale R,Lemoine J M. 2007. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity[J]. Geophys J Int,171(1):177–190. doi: 10.1111/j.1365-246X.2007.03525.x
    Peltier W R. 2021. Mantle viscosity[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 1107–1115.
    Pepe A,Calò F. 2017. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements[J]. Appl Sci,7(12):1264. doi: 10.3390/app7121264
    Piersanti A,Spada G,Sabadini R,Bonafede M. 1995. Global post-seismic deformation[J]. Geophys J Int,120(3):544–566. doi: 10.1111/j.1365-246X.1995.tb01838.x
    Pollitz F F. 1992. Postseismic relaxation theory on the spherical earth[J]. Bull Seismol Soc Am,82(1):422–453.
    Pollitz F F. 1996. Coseismic deformation from earthquake faulting on a layered spherical Earth[J]. Geophys J Int,125(1):1–14. doi: 10.1111/j.1365-246X.1996.tb06530.x
    Pollitz F F. 1997. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth[J]. J Geophys Res:Solid Earth,102(B8):17921–17941. doi: 10.1029/97JB01277
    Press F. 1965. Displacements,strains,and tilts at teleseismic distances[J]. J Geophys Res,70(10):2395–2412. doi: 10.1029/JZ070i010p02395
    Reid H F. 1910. Mechanics of the Earthquake, the California Earthquake of April 18, 1906[R]. Washington D C: The State Investigation Commission, Carnegie Institution of Washington: 29–31.
    Reilinger R E,Ergintav S,Bürgmann R,McClusky S,Lenk O,Barka A,Gurkan O,Hearn L,Feigl K L,Cakmak R,Aktug B,Ozener H,Töksoz M N. 2000. Coseismic and postseismic fault slip for the 17 August 1999,M=7.5,Izmit,Turkey earthquake[J]. Science,289(5484):1519–1524. doi: 10.1126/science.289.5484.1519
    Rolandone F,Dreger D,Murray M,Bürgmann R. 2006. Coseismic slip distribution of the 2003 MW6.6 San Simeon earthquake,California,determined from GPS measurements and seismic waveform data[J]. Geophys Res Lett,33(16):L16315. doi: 10.1029/2006GL027079
    Roth F. 1990. Subsurface deformations in a layered elastic half-space[J]. Geophys J Int,103(1):147–155. doi: 10.1111/j.1365-246X.1990.tb01759.x
    Rundle J B. 1980. Static elastic-gravitational deformation of a layered half space by point couple sources[J]. J Geophys Res: Solid Earth,85(B10):5355–5363. doi: 10.1029/JB085iB10p05355
    Ryder I,Parsons B,Wright T J,Funning G J. 2007. Post-seismic motion following the 1997 Manyi (Tibet) earthquake:InSAR observations and modelling[J]. Geophys J Int,169(3):1009–1027. doi: 10.1111/j.1365-246X.2006.03312.x
    Sabadini R,Yuen D A,Boschi E. 1984. The effects of post-seismic motions on the moment of inertia of a stratified viscoelastic earth with an asthenosphere[J]. Geophys J Int,79(3):727–745. doi: 10.1111/j.1365-246X.1984.tb02865.x
    Salvi S,Stramondo S,Funning G J,Ferretti A,Sarti F,Mouratidis A. 2012. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sens Environ,120:164–174. doi: 10.1016/j.rse.2011.09.029
    Savage J C,Hastie L M. 1969. A dislocation model for the Fairview Peak,Nevada,earthquake[J]. Bull Seismol Soc Am,59(5):1937–1948. doi: 10.1785/BSSA0590051937
    Savage J C,Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res,78(5):832–845. doi: 10.1029/JB078i005p00832
    Savage J C,Prescott W H. 1978. Asthenosphere readjustment and the earthquake cycle[J]. J Geophys Res:Solid Earth,83(B7):3369–3376. doi: 10.1029/JB083iB07p03369
    Savage J C. 1983. A dislocation model of strain accumulation and release at a subduction zone[J]. J Geophys Res:Solid Earth,88(B6):4984–4996. doi: 10.1029/JB088iB06p04984
    Scholz C H. 1998. Earthquakes and friction laws[J]. Nature,391(6662):37–42. doi: 10.1038/34097
    Segall P,Davis J L. 1997. GPS applications for geodynamics and earthquake studies[J]. Annu Rev Earth Planet Sci,25(1):301–336. doi: 10.1146/annurev.earth.25.1.301
    Soldati G,Spada G. 1999. Large earthquakes and Earth rotation:The role of mantle relaxation[J]. Geophys Res Lett,26(7):911–914. doi: 10.1029/1999GL900144
    Spaans K,Hooper A. 2016. InSAR processing for volcano monitoring and other near-real time applications[J]. J Geophys Res:Solid Earth,121(4):2947–2960. doi: 10.1002/2015JB012752
    Spada G,Sabadini R,Yuen D A,Ricard Y. 1992. Effects on post-glacial rebound from the hard rheology in the transition zone[J]. Geophys J Int,109(3):683–700. doi: 10.1111/j.1365-246X.1992.tb00125.x
    Steketee J A. 1958. On Volterra’s dislocations in a semi-infinite elastic medium[J]. Can J Phys,36(2):192–205. doi: 10.1139/p58-024
    Suito H,Freymueller J T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. J Geophys Res:Solid Earth,114:B11404.
    Sun W K. 1992. Potential and gravity changes caused by dislocations in spherically symmetric Earth models[J]. Bull Earthq Res Inst Univ Tokyo,67(2):89–238.
    Sun W K. 2003. Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth:Geoid change[J]. J Geod,77(7/8):381–387.
    Sun W K. 2004a. Asymptotic solution of static displacements caused by dislocations in a spherically symmetric Earth[J]. J Geophys Res:Solid Earth,109(B5):B05402.
    Sun W K. 2004b. Short note:Asymptotic theory for calculating deformations caused by dislocations buried in a spherical earth-gravity change[J]. J Geod,78(1/2):76–81.
    Sun W K,Okubo S. 1993. Surface potential and gravity changes due to internal dislocations in a spherical Earth: Ⅰ . Theory for a point dislocation[J]. Geophys J Int,114(3):569–592. doi: 10.1111/j.1365-246X.1993.tb06988.x
    Sun W K,Okubo S. 1998. Surface potential and gravity changes due to internal dislocations in a spherical Earth: Ⅱ . Application to a finite fault[J]. Geophys J Int,132(1):79–88.
    Sun W K,Okubo S. 2002. Effects of earth’s spherical curvature and radial heterogeneity in dislocation studies:For a point dislocation[J]. Geophys Res Lett,29(12):46-1–46-4.
    Sun W K,Okubo S. 2004. Coseismic deformations detectable by satellite gravity missions:A case study of Alaska (1964,2002) and Hokkaido (2003) earthquakes in the spectral domain[J]. J Geophys Res:Solid Earth,109(B4):B04405.
    Sun W K,Zhou X. 2012. Coseismic deflection change of the vertical caused by the 2011 Tohoku-Oki earthquake (MW9.0)[J]. Geophys J Int,189(2):937–955. doi: 10.1111/j.1365-246X.2012.05434.x
    Sun W K,Dong J. 2013. Relation of dislocation Love numbers and conventional Love numbers and corresponding Green’s functions for a surface rupture in a spherical earth model[J]. Geophys J Int,193(2):717–733. doi: 10.1093/gji/ggt030
    Sun W K,Dong J. 2014. Geo-center movement caused by huge earthquakes[J]. J Geodyn,76:1–7. doi: 10.1016/j.jog.2014.02.008
    Sun W K,Okubo S,Fu G Y. 2006a. Green’s functions of coseismic strain changes and investigation of effects of Earth’s spherical curvature and radial heterogeneity[J]. Geophys J Int,167(3):1273–1291. doi: 10.1111/j.1365-246X.2006.03089.x
    Sun W K,Okubo S,Sugano T. 2006b. Determining dislocation Love numbers using satellite gravity mission observations[J]. Earth Planets Space,58(5):497–503. doi: 10.1186/BF03351946
    Sun W K,Okubo S,Fu G Y,Araya A. 2009. General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model:Applicable to deformed earth surface and space-fixed point[J]. Geophys J Int,177(3):817–833. doi: 10.1111/j.1365-246X.2009.04113.x
    Sun X D,Hartzell S. 2014. Finite-fault slip model of the 2011 MW5.6 Prague,Oklahoma earthquake from regional waveforms[J]. Geophys Res Lett,41(12):4207–4213. doi: 10.1002/2014GL060410
    Takeuchi H,Hasegawa Y. 1965. Viscosity distribution within the Earth[J]. Geophys J Int,9(5):503–508. doi: 10.1111/j.1365-246X.1965.tb06321.x
    Tanaka Y,Okuno J,Okubo S. 2006. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model ( Ⅰ ):Vertical displacement and gravity variation[J]. Geophys J Int,164(2):273–289. doi: 10.1111/j.1365-246X.2005.02821.x
    Tanaka Y,Okuno J,Okubo S. 2007. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model ( Ⅱ ):Horizontal displacement[J]. Geophys J Int,170(3):1031–1052. doi: 10.1111/j.1365-246X.2007.03486.x
    Tanaka Y,Klemann V,Fleming K,Martinec Z. 2009. Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth[J]. Geophys J Int,176(3):715–739. doi: 10.1111/j.1365-246X.2008.04015.x
    Tang H,Sun W K. 2018a. Asymptotic co- and post-seismic displacements in a homogeneous Maxwell sphere[J]. Geophys J Int,214(1):731–750. doi: 10.1093/gji/ggy174
    Tang H,Sun W K. 2018b. Closed-form expressions of seismic deformation in a homogeneous Maxwell earth model[J]. J Geophys Res:Solid Earth,123(7):6033–6051. doi: 10.1029/2018JB015594
    Tang H,Sun W K. 2019. New method for computing postseismic deformations in a realistic gravitational viscoelastic earth model[J]. J Geophys Res:Solid Earth,124(5):5060–5080. doi: 10.1029/2019JB017368
    Tang H, Dong J, Sun W K. 2020a. An approximate method to simulate post-seismic deformations in a realistic earth model[C]//International Association of Geodesy Symposia. Berlin, Heidelberg: Springer: 1−7.
    Tang H,Zhang L,Chang L,Sun W K. 2020b. Optimized approximate inverse Laplace transform for geo-deformation computation in viscoelastic Earth model[J]. Geophys J Int,223(1):444–453. doi: 10.1093/gji/ggaa322
    Tapley B D,Watkins M M,Flechtner F,Reigber C,Bettadpur S,Rodell M,Sasgen I,Famiglietti J S,Landerer F W,Chambers D P,Reager J T,Gardner A S,Save H,Ivins E R,Swenson S C,Boening C,Dahle C,Wiese D N,Dobslaw H,Tamisiea M E,Velicogna I. 2019. Contributions of GRACE to understanding climate change[J]. Nat Climate Change,9(5):358–369. doi: 10.1038/s41558-019-0456-2
    Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium[J]. J Appl Phys,21(2):89–93. doi: 10.1063/1.1699629
    Tian Z,Freymueller J T,Yang Z Q. 2021. Postseismic deformation due to the 2012 MW7.8 Haida Gwaii and 2013 MW7.5 Craig earthquakes and its implications for regional rheological structure[J]. J Geophys Res:Solid Earth,126:e2020JB020197.
    Valsa J,Brančik L. 1998. Approximate formulae for numerical inversion of Laplace transforms[J]. Int J Numer Model:Electron Netw Dev Fields,11(3):153–166. doi: 10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C
    Van Camp M,de Viron O,Watlet A,Meurers B,Francis O,Caudron C. 2017. Geophysics from terrestrial time-variable gravity measurements[J]. Rev Geophys,55(4):938–992. doi: 10.1002/2017RG000566
    Vermeersen L L A,Sabadini R,Spada G. 1996. Analytical visco-elastic relaxation models[J]. Geophys Res Lett,23(7):697–700. doi: 10.1029/96GL00620
    Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults?[J]. Tectonophysics,644/645:22–39. doi: 10.1016/j.tecto.2015.01.013
    Wang H S. 1999. Surface vertical displacements,potential perturbations and gravity changes of a viscoelastic earth model induced by internal point dislocations[J]. Geophys J Int,137(2):429–440.
    Wang K L. 2007. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles[G]//The Seismogenic Zone of Subduction Thrust Faults. New York: Columbia University Press: 540−577.
    Wang K L,Hu Y,He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth[J]. Nature,484(7394):327–332. doi: 10.1038/nature11032
    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774.
    Wang R J,Martín F L,Roth F. 2003. Computation of deformation induced by earthquakes in a multi-layered elastic crust:Fortran programs EDGRN/EDCMP[J]. Comput Geosci,29(2):195–207. doi: 10.1016/S0098-3004(02)00111-5
    Wang R J,Martín F L,Roth F. 2006. PSGRN/PSCMP:A new code for calculating co- and post-seismic deformation,geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Comput Geosci,32(4):527–541. doi: 10.1016/j.cageo.2005.08.006
    Wang W X,Shi Y L,Sun W K,Zhang J. 2011. Viscous lithospheric structure beneath Sumatra inferred from post-seismic gravity changes detected by GRACE[J]. Science China Earth Science,54(8):1257–1267. doi: 10.1007/s11430-011-4217-y
    Wang W X,Sun W K,Wu Y Q,Gu G H. 2014. Modification of fault slip models of the MW9.0 Tohoku earthquake by far field GPS observations[J]. J Geodyn,75:22–33. doi: 10.1016/j.jog.2014.01.005
    Wason H R,Singh S J. 1972. Static deformation of a multilayered sphere by internal sources[J]. Geophys J Int,27(1):1–14. doi: 10.1111/j.1365-246X.1972.tb02342.x
    Wdowinski S, Eriksson S. 2009. Geodesy in the 21st century[J]. EOS Trans AGU, 90(18): 153-155.
    Weertman J, Weertman J R. 1964. Elementary Dislocation Theory[M]. New York: Macmillan: 1–15.
    Weertman J,Weertman J R. 1975. High temperature creep of rock and mantle viscosity[J]. Annu Rev Earth Planet Sci,3(1):293–315. doi: 10.1146/annurev.ea.03.050175.001453
    Wiesemeyer H, Nothnagel A. 2021. Very long baseline interferometry[G]//Encyclopedia of Solid Earth Geophysics. Dordrecht: Springer: 1902–1907.
    Williams C A,Wallace L M. 2015. Effects of material property variations on slip estimates for subduction interface slow-slip events[J]. Geophys Res Lett,42(4):1113–1121. doi: 10.1002/2014GL062505
    Xu C Y. 2021. Coseismic changes in the kinetic rotational energy of the Earth from 1976 to 2019[J]. Geophys J Int,224(2):1127–1132.
    Xu C Y,Sun W K. 2014. Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory[J]. Geophys J Int,199(3):1655–1661. doi: 10.1093/gji/ggu364
    Xu C Y,Chao B F. 2015. Seismological versus geodetic reference frames for seismic dislocation:Consistency under momentum conservations[J]. Geophys J Int,200(2):1000–1004. doi: 10.1093/gji/ggu439
    Xu C Y,Chao B F. 2017. Coseismic changes of gravitational potential energy induced by global earthquakes based on spherical-Earth elastic dislocation theory[J]. J Geophys Res:Solid Earth,122(5):4053–4063. doi: 10.1002/2017JB014204
    Xu C Y,Chao B F. 2019. Seismic effects on the secular drift of the Earth’s rotational pole[J]. J Geophys Res:Solid Earth,124(6):6092–6100. doi: 10.1029/2018JB017164
    Xu C Y,Sun W K,Chao B F. 2014. Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory[J]. J Geophys Res:Solid Earth,119(12):9031–9041. doi: 10.1002/2014JB011328
    Xu C Y,Wei D P,Sun W K. 2016. Contribution of coseismic deformations on the current expansion of the Earth[J]. J Geodyn,99:10–15. doi: 10.1016/j.jog.2016.05.001
    Xu C Y,Su X N,Liu T,Sun W K. 2017. Geodetic observations of the co- and post-seismic deformation of the 2013 Okhotsk Sea deep-focus earthquake[J]. Geophys J Int,209(3):1924–1933. doi: 10.1093/gji/ggx123
    Yabuki T,Matsu’ura M. 1992. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip[J]. Geophys J Int,109(2):363–375. doi: 10.1111/j.1365-246X.1992.tb00102.x
    Yamasaki T,Houseman G A. 2012. The crustal viscosity gradient measured from post-seismic deformation:A case study of the 1997 Manyi (Tibet) earthquake[J]. Earth Planet Sci Lett,351/352:105–114. doi: 10.1016/j.jpgl.2012.07.030
    Yang J Y,Sun W K. 2020. Determining dislocation Love number of vertical displacement using GPS observations:Case study of 2011 Tohoku-Oki earthquake (MW9.0)[J]. Geophys J Int,222(2):965–977. doi: 10.1093/gji/ggaa163
    Yang J Y,Zhou X,Yi S,Sun W K. 2015. Determining dislocation Love numbers using GRACE satellite mission gravity data[J]. Geophys J Int,203(1):257–269. doi: 10.1093/gji/ggv265
    Zhou J C,Sun W K,Sun H P,Xu J Q. 2013. Reformulation of co-seismic polar motion excitation and low degree gravity changes:Applied to the 2011 Tohoku-Oki earthquake (MW9.0)[J]. J Geodyn,63:20–26. doi: 10.1016/j.jog.2012.09.004
    Zhou J C,Sun W K,Sun H P,Xu J Q,Cui X M. 2014a. Co-seismic change of length of day based on the point dislocation theory for a SNREI Earth[J]. J Geodyn,79:18–22.
    Zhou J C,Sun W K,Dong J. 2015. A correction to the article “Geo-center movement caused by huge earthquakes” by Wenke Sun and Jie Dong[J]. J Geodyn,87:67–73. doi: 10.1016/j.jog.2015.02.003
    Zhou J C,Sun W K,Jin S G,Sun H P,Xu J Q. 2016. Rotation change in the orientation of the centre-of-figure frame caused by large earthquakes[J]. Geophys J Int,206(2):999–1008. doi: 10.1093/gji/ggw182
    Zhou J C,Pan E N,Bevis M. 2019a. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅰ :Analytical dislocation Love numbers[J]. Geophys J Int,217(3):1681–1705. doi: 10.1093/gji/ggz110
    Zhou J C,Pan E N,Bevis M. 2019b. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅱ :Accurate Green’s functions[J]. Geophys J Int,219(3):1717–1728. doi: 10.1093/gji/ggz392
    Zhou J C,Pan E N,Bevis M. 2020. A point dislocation in a layered,transversely isotropic and self-gravitating Earth. Part Ⅲ :Internal deformation[J]. Geophys J Int,223(1):420–443. doi: 10.1093/gji/ggaa319
    Zhou X,Cambiotti G,Sun W,Sabadini R. 2014b. The coseismic slip distribution of a shallow subduction fault constrained by prior information:The example of 2011 Tohoku (MW9.0) megathrust earthquake[J]. Geophys J Int,199(2):981–995. doi: 10.1093/gji/ggu310
    Zhou X,Cambiotti G,Sun W K,Sabadini R. 2018. Co-seismic slip distribution of the 2011 Tohoku (MW9.0) earthquake inverted from GPS and space-borne gravimetric data[J]. Earth Planet Phys,2(2):120–138. doi: 10.26464/epp2018013
    Zhu X X,Montazeri S,Gisinger C,Hanssen R F,Bamler R. 2016. Geodetic SAR tomography[J]. IEEE Trans Geosci Remote Sens,54(1):18–35. doi: 10.1109/TGRS.2015.2448686
  • Related Articles

Catalog

    Article views (626) PDF downloads (223) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return