Seismic dislocation theory of spherical Earth model and its application
-
Graphical Abstract
-
Abstract
Seismic dislocation theory is the theory of studying the relationship between seismic fault slip and geophysical field change, and also it is the link between the source mechanism, the internal structure of the Earth, earthquake forecasting and other basic geophysical problems and geodetic-geophysical observation. The widely used dislocation theory of the semi-infinite medium model, due to the limitation of its geometric attribute, will riskily result in a certain degree of oversight and even fault in the application of seismic deformation and geodynamics analysis. In addition, modern geodesy technology can accurately observe seismic deformation on global and regional scales, and a suitable seismic dislocation theory born for global seismic deformation study is urgently required. For this purpose, our team has developed a new system of seismic dislocation theory based on the spherical Earth model through many years of systematic research. The establishment of such theory has promoted the study of global seismic deformation and geodynamic process, and expanded the study of earthquake-induced global geodynamic changes. This informative article briefly introduces the domestic development and application of seismic dislocation theory of spherical Earth model. The first section introduces the dislocation theory of elastic spherical Earth model, three-dimensional inhomogeneous Earth model and viscoelastic Earth model. The second section introduces the relevant applications of the dislocation theory of spherical Earth model in geodynamic change, fault and underground structure inversion and others in seismological geodesy. The seismic dislocation theory of the spherical Earth model has promoted the study of global seismic deformation and geodynamic changes. It is one of the important theoretical advances in the field of geophysics in recent years.
-
-