Xu Guolin, Chen Longwei. 2019: Frequency spectra characteristics of strong-motion acceleration recordings at liquefied sites. Acta Seismologica Sinica, 41(5): 671-679. DOI: 10.11939/jass.20190112
Citation: Xu Guolin, Chen Longwei. 2019: Frequency spectra characteristics of strong-motion acceleration recordings at liquefied sites. Acta Seismologica Sinica, 41(5): 671-679. DOI: 10.11939/jass.20190112

Frequency spectra characteristics of strong-motion acceleration recordings at liquefied sites

More Information
  • Received Date: May 29, 2019
  • Revised Date: July 08, 2019
  • Available Online: August 29, 2019
  • Published Date: August 31, 2019
  • To understand the characteristics of earthquake action on buildings at potentially lique-fiable sites, 11 acceleration records from the selected liquefied sites were analyzed to discuss the characteristics of ground motion. The results showed that the acceleration amplitudes were remarkably reduced after initial site liquefaction and that the long-period components increased significantly with apparent " spikes” recorded. Comparison of the design spectra widely used in seismic design codes, both domestically and internationally, with the acceleration spectra obtained in this study shows that: in the short period range T<0.3 s, the design spectra were consistent with the recorded response spectra; in the medium and long period range 0.3 s<T<1.5 s, the design spectra were smaller significantly than the recorded response spectra; in the long period range T>1.5 s, the design spectra was a little smaller than the recorded spectra. Five typical numerical methods are used to simulate liquefaction acceleration, the results demonstrated that the numerical methods could satisfactorily predict response spectral values for the period range T<1.0 s, but generally lower than the spectral values for the long-period T>1.0 s.
  • 董林,王兰民,夏坤,袁晓铭. 2015. 含细粒砂性土标贯液化判别方法改进研究[J]. 岩土工程学报,37(12):2320–2325. doi: 10.11779/CJGE201512024
    Dong L,Wang L M,Xia K,Yuan X M. 2015. Improvement of SPT-based liquefaction discrimination methods for fines-containing sandy soils[J]. Chinese Journal of Geotechnical Engineering,37(12):2320–2325 (in Chinese).
    李兆焱,袁晓铭. 2016. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 地震工程与工程振动,36(3):1–7.
    Li Z Y,Yuan X M. 2016. Seismic damage summarization of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. Earthquake Engineering and Engineering Vibration,36(3):1–7 (in Chinese).
    刘恢先. 1989. 唐山大地震震害[M]. 北京: 地震出版社: 301−338.
    Liu H X. 1989. Earthquake Damage of the Tangshan Earthquake[M]. Beijing: Seismological Press: 301−338 (in Chinese).
    孙锐,袁晓铭. 2004. 液化土层地震动特征分析[J]. 岩土工程学报,26(5):684–690. doi: 10.3321/j.issn:1000-4548.2004.05.023
    Sun R,Yuan X M. 2004. Analysis on feature of surface ground motion for liquefied soil layer[J]. Chinese Journal of Geotechnical Engineering,26(5):684–690 (in Chinese).
    孙锐,袁晓铭. 2010. 场地液化对反应谱影响评价[J]. 应用基础与工程科学学报,18(增刊1):173–180.
    Sun R,Yuan X M. 2010. Evaluation for effect of site liquefaction on response spectrum[J]. Journal of Basic Science and Engineering,18(S1):173–180 (in Chinese).
    袁晓铭,曹振中. 2014. 基于土层常规参数的液化发生概率计算公式及其可靠性研究[J]. 土木工程学报,47(4):99–108.
    Yuan X M,Cao Z Z. 2014. Conventional soils parameters-based liquefaction probabilistic evaluation formula and its reliability analysis[J]. China Civil Engineering Journal,47(4):99–108 (in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2015. GB 18306—2015中国地震动参数区划图[S]. 北京: 中国标准出版社: 239−241.
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. 2016. GB 18306−2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: China Standards Publishing House: 239−241 (in Chinese).
    Building Seismic Safety Council, The Federal Emerency Management Agency. 2009. NEHRP Recommended Seismic Provisions[R]. Washington D C: Building Seismic Safety Council: 5−9.
    Chen L W,Yuan X M,Sun R. 2011. Simplified modeling of ground motion on liquefied sites under seismic loading[J]. Adv Mater Res,243/249:2842–2851. doi: 10.4028/www.scientific.net/AMR.243-249.2842
    Cubrinovski M,Bradley B A,Wotherspoon L,Green R,Bray J,Wood C,Pender M,Allen J,Bradshaw A,Rix G,Taylor M,Robinson K,Henderson D,Giorgini S,Ma K,Winkley A,Zupan J,O’Rourke T,DePascale G,Wells D. 2011. Geotechnical aspects of the 22 February 2011 Christchurch earthquake[J]. Bull New Zealand Soc Earthq Eng,44(4):205–226.
    European Committee for Standardization. 2004. EN 1998-1 Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussells: Management Centre: 19−30.
    Holzer T L,Youd T L,Hanks T C. 1989. Dynamics of liquefaction during the 1987 Superstition Hills,California,earth-quake[J]. Science,244(4900):56–59. doi: 10.1126/science.244.4900.56
    Idriss I M, Boulanger R W. 2008. Liquefaction During Earthquake[M]. Oakland: Earthquake Engineering Research Institute.
    Idriss I M,Boulanger R W. 2015. 2nd Ishihara lecture:SPT- and CPT-based relationships for the residual shear strength of liquefied soils[J]. Soil Dyn Earthq Eng,68:57–68. doi: 10.1016/j.soildyn.2014.09.010
    International Code Council. 2004. 2003 International Building Code[S]. Falls Church: International Code Council, INC: 16-77−16-106.
    Ishihara K,Yoshimine M. 1992. Evaluation of settlements in sand deposits following liquefaction during earthquakes[J]. Soils Found,32(1):173–188. doi: 10.3208/sandf1972.32.173
    Seed H B, Idriss I M. 1970. A Simplified Procedure for Evaluating Soil Liquefaction Potential, U. S. Earthquake Engineering Research Centre Report No. EERC 70-9[R]. Berkeley: University of California at Berkeley: 1249−1273.
    The Council of Standards of New Zealand. 2004. NZS 1170.5: 2004 Structural Design Actions Part 5: Earthquake Actions - New Zealand[S]. Wellington: New Zealand Standard: 10−33.
    Youd T L. 1998. Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Sites, Technical Report MCEER-98-0005[R]. Buffalo: Multidisciplinary Center for Earthquake Engineering Research: 58.
    Youd T L,Holzer T L. 1994. Piezometer performance at wildlife liquefaction site,California[J]. J Geotech Eng,120(6):975–995. doi: 10.1061/(ASCE)0733-9410(1994)120:6(975)
    Youd T L,Idriss I M. 2001. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. J Geotech Geoenviron Eng,127(4):297–313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    Youd T L,Carter B L. 2005. Influence of soil softening and liquefaction on spectral acceleration[J]. J Geotech Geoenviron Eng,131(7):811–825. doi: 10.1061/(ASCE)1090-0241(2005)131:7(811)
  • Related Articles

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (1333) PDF downloads (88) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return