Feng X Z,Lu L Y,Wang S T,Qin T W. 2023. Constraint on low-velocity layer using higher mode Rayleigh waves in the shallow structure research. Acta Seismologica Sinica45(2):203−222. DOI: 10.11939/jass.20210189
Citation: Feng X Z,Lu L Y,Wang S T,Qin T W. 2023. Constraint on low-velocity layer using higher mode Rayleigh waves in the shallow structure research. Acta Seismologica Sinica45(2):203−222. DOI: 10.11939/jass.20210189

Constraint on low-velocity layer using higher mode Rayleigh waves in the shallow structure research

More Information
  • Received Date: December 09, 2021
  • Revised Date: June 15, 2022
  • Available Online: March 14, 2023
  • Published Date: March 14, 2023
  • Due to high sensitivity to S-wave velocity, Rayleigh-wave dispersion curves of the fundamental and higher modes are usually used to invert near-surface S-wave velocities in engineering geophysical exploration. For the model containing a low-velocity layer, the dispersion curves of the fundamental and higher modes show two typical characteristics. One typical characteristic is that the crossover would be observed between different modes, and the fundamental mode shows obvious indication of low-velocity characteristics in interested frequency ranges. For the other kind of model with low-velocity layers, the dispersion curves have no visual crossing phenomenon in the frequency range of interest, and the low-velocity characteristics may not be observed in the measured dispersion curves. For the latter model containing a low-velocity layer, which is often encountered in practice, investigations on the inversion of multi-mode Rayleigh waves are conducted in this paper based on seismic reflection data. The studies show that if the observed fundamental-mode dispersion curve does not include the frequency band sensitive to the depth of the low-velocity layer, the inversion based on the fundamental-mode alone may not be able to recover the low-velocity characteristics of the model. But the low-velocity layer can be reconstructed accurately by inversion considering both the fundamental and higher mode Rayleigh waves even the observed fundamental mode dispersion curve has no obvious indication of low-velocity characteristics.
  • 陈宇坤,李振海,邵永新,王志胜,高武平,杨绪连. 2008. 天津地区第四纪年代地层剖面研究[J]. 地震地质,30(2):383–399. doi: 10.3969/j.issn.0253-4967.2008.02.005
    Chen Y K,Li Z H,Shao Y X,Wang Z S,Gao W P,Yang X L. 2008. Study on the Quaternary chronostratigraphic section in Tianjin area[J]. Seismology and Geology,30(2):383–399 (in Chinese).
    陈宇坤, 赵国敏, 闫成国, 李振海, 杨菲, 杨绪连, 王志胜, 刘芳, 刘红艳, 任峰, 纪静, 张春丽, 杨港生, 李文栋. 2013. 天津市活动断层探测与地震危险性评价[M]. 北京: 科学出版社: 171–175.
    Chen Y K, Zhao G M, Yan C G, Li Z H, Yang F, Yang X L, Wang Z S, Liu F, Liu H Y, Ren F, Ji J, Zhang C L, Yang G S, Li W D. 2013. Detection on Active Faults and Assessment on Seismic Risk in Tianjin[M]. Beijing: Science Press: 171–175 (in Chinese).
    凡友华,刘雪峰,陈晓非,刘家琦. 2009. 瑞雷波勘探的f-k域能量最大模方法[J]. 哈尔滨工业大学学报,41(1):105–107. doi: 10.3321/j.issn:0367-6234.2009.01.024
    Fan Y H,Liu X F,Chen X F,Liu J Q. 2009. Max-mode method of Rayleigh wave prospecting in frequency-wavenumber domain[J]. Journal of Harbin Institute of Technology,41(1):105–107 (in Chinese).
    李建平. 2018. 浅层地震反射资料的多阶振型面波反演[J]. 地震学报,40(1):24–31. doi: 10.11939/jass.20170116
    Li J P. 2018. Inversion of multi-mode surface waves extracted from the shallow seismic reflection data[J]. Acta Seismologica Sinica,40(1):24–31 (in Chinese).
    鲁来玉,张碧星,汪承灏. 2006. 基于瑞利波高阶模式反演的实验研究[J]. 地球物理学报,49(4):1082–1091. doi: 10.3321/j.issn:0001-5733.2006.04.021
    Lu L Y,Zhang B X,Wang C H. 2006. Experiment and inversion studies on Rayleigh wave considering higher modes[J]. Chinese Journal of Geophysics,49(4):1082–1091 (in Chinese).
    鲁来玉,丁志峰,何正勤. 2011. 浅层有限频率面波成像中的3D灵敏度核分析[J]. 地球物理学报,54(1):55–66. doi: 10.3969/j.issn.0001-5733.2011.01.007
    Lu L Y,Ding Z F,He Z Q. 2011. Analysis of 3D sensitivity kernels of the finite frequency surface wave tomography in shallow subsurface[J]. Chinese Journal of Geophysics,54(1):55–66 (in Chinese). doi: 10.1002/cjg2.1586
    罗银河,夏江海,刘江平,刘庆生. 2008. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报,51(1):242–249. doi: 10.3321/j.issn:0001-5733.2008.01.030
    Luo Y H,Xia J H,Liu J P,Liu Q S. 2008. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics,51(1):242–249 (in Chinese).
    王辉,丁志峰. 2006. 浅层地震勘探资料处理中的速度分析参数选取[J]. 地震地质,28(4):597–603. doi: 10.3969/j.issn.0253-4967.2006.04.007
    Wang H,Ding Z F. 2006. Parameters selection for velocity analysis in shallow seismic data processing[J]. Seismology and Geology,28(4):597–603 (in Chinese).
    夏江海. 2015. 高频面波方法[M]. 武汉: 中国地质大学出版社: 85–86.
    Xia J H. 2015. High-Frequency Surface-Wave Method[M]. Wuhan: China University of Geosciences Press: 85–86 (in Chinese).
    尹晓菲,胥鸿睿,郝晓菡,孙石达,王芃. 2020. 水平层状模型中多模式瑞雷波和拉夫波相速度频散曲线的灵敏度分析[J]. 石油地球物理勘探,55(1):136–146.
    Yin X F,Xu H R,Hao X H,Sun S D,Wang P. 2020. Sensitivity analysis of multi-mode Rayleigh and Love wave phase-velocity dispersion curves in horizontal layered models[J]. Oil Geophysical Prospecting,55(1):136–146 (in Chinese).
    张碧星,鲁来玉. 2002. 层状半空间中导波的传播[J]. 声学学报,27(4):295–304. doi: 10.3321/j.issn:0371-0025.2002.04.002
    Zhang B X,Lu L Y. 2002. Propagation of guided waves in stratified half space[J]. Acta Acustica,27(4):295–304 (in Chinese).
    Alleyne D,Cawley P. 1991. A two-dimensional Fourier transform method for the measurement of propagating multimode signals[J]. J Acoust Soc Am,89(3):1159–1168. doi: 10.1121/1.400530
    Forbriger T. 2003a. Inversion of shallow-seismic wavefields:I. Wavefield transformation[J]. Geophys J Int,153(3):719–734. doi: 10.1046/j.1365-246X.2003.01929.x
    Forbriger T. 2003b. Inversion of shallow-seismic wavefields:II. Inferring subsurface properties from wavefield transforms[J]. Geophys J Int,153(3):735–752. doi: 10.1046/j.1365-246X.2003.01985.x
    Forchap E A,Schmid G. 1998. Experimental determination of Rayleigh-wave mode velocities using the method of wave number analysis[J]. Soil Dyn Earthq Eng,17(3):177–183.
    Foti S. 2000. Multistation Methods for Geotechnical Characterization Using Surface Waves[D]. Turin: Politecnico di Torino: 63–65, 109–127.
    Gabriels P,Snieder R,Nolet G. 1987. In situ measurements of shear-wave velocity in sediments with higher-mode Rayleigh waves[J]. Geophys Prospect,35(2):187–196. doi: 10.1111/j.1365-2478.1987.tb00812.x
    Gao L L,Xia J H,Pan Y D. 2014. Misidentification caused by leaky surface wave in high-frequency surface wave method[J]. Geophys J Int,199(3):1452–1462. doi: 10.1093/gji/ggu337
    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismological Research Letters,84:1081–1088.
    Ikeda T,Matsuoka T,Tsuji T,Hayashi K. 2012. Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method[J]. Geophys J Int,190(1):541–552. doi: 10.1111/j.1365-246X.2012.05496.x
    Liang Q,Chen C,Zeng C,Luo Y H,Xu Y X. 2008. Inversion stability analysis of multimode Rayleigh-wave dispersion curves using low-velocity-layer models[J]. Near Surf Geophys,6(3):157–165. doi: 10.3997/1873-0604.2007040
    Lu L Y,Zhang B X. 2004. Analysis of dispersion curves of Rayleigh waves in the frequency-wavenumber domain[J]. Can Geotech J,41(4):583–598. doi: 10.1139/t04-005
    Lu L Y,Zhang B X. 2006. Inversion of Rayleigh waves using a genetic algorithm in the presence of a low-velocity layer[J]. Acoust Phys,52(6):701–712. doi: 10.1134/S106377100606011X
    Lu L Y,Wang C H,Zhang B X. 2007. Inversion of multimode Rayleigh waves in the presence of a low-velocity layer:Numerical and laboratory study[J]. Geophys J Int,168(3):1235–1246. doi: 10.1111/j.1365-246X.2006.03258.x
    Luo Y H,Xia J H,Liu J P,Liu Q S,Xu S F. 2007. Joint inversion of high-frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,62(4):375–384.
    Maraschini M,Ernst F,Foti S,Socco L V. 2010. A new misfit function for multimodal inversion of surface waves[J]. Geophysics,75(4):G31–G43. doi: 10.1190/1.3436539
    Maraschini M,Foti S. 2010. A Monte Carlo multimodal inversion of surface waves[J]. Geophys J Int,182(3):1557–1566. doi: 10.1111/j.1365-246X.2010.04703.x
    Matsuzawa H,Yoshizawa K. 2019. Array-based analysis of multimode surface waves:Application to phase speed measurements and modal waveform decomposition[J]. Geophys J Int,218(1):295–312. doi: 10.1093/gji/ggz153
    Mcmechan G A,Yedlin M J. 1981. Analysis of dispersive waves by wave field transformation[J]. Geophysics,46(6):869–874. doi: 10.1190/1.1441225
    Socco L V,Foti S,Boiero D. 2010. Surface-wave analysis for building near-surface velocity models:Established approaches and new perspectives[J]. Geophysics,75(5):75A83–75A102. doi: 10.1190/1.3479491
    Tokimatsu K,Tamura S,Kojima H. 1992. Effects of multiple modes on Rayleigh wave dispersion characteristics[J]. J Geotech Eng,118(10):1529–1543. doi: 10.1061/(ASCE)0733-9410(1992)118:10(1529)
    Wang J N,Wu G X,Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. J Geophys Res:Solid Earth,124(4):3708–3723. doi: 10.1029/2018JB016595
    Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):659–992. doi: 10.1190/1.1444578
    Xia J H,Miller R D,Park C B,Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,52:45–57. doi: 10.1016/S0926-9851(02)00239-2
    Xu Y X,Xia J H,Miller R D. 2006. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J]. J Appl Geophys,59(2):117–125. doi: 10.1016/j.jappgeo.2005.08.002
    Zhang S X,Chan L S. 2003. Possible effects of misidentified mode number on Rayleigh wave inversion[J]. J Appl Geophys,53(1):17–29. doi: 10.1016/S0926-9851(03)00014-4
  • Related Articles

  • Cited by

    Periodical cited type(22)

    1. 李金良,黄永林. 1624年“扬州地震”震中的新认识. 中国地震. 2023(02): 385-394 .
    2. 张向格,张绪教,刘超,王鹤,刘心兰,王璐琳. 五大连池世界地质公园老黑山景区火山地震遗迹的发现及其意义. 地球学报. 2022(01): 111-122 .
    3. 赵怀群,陈文凯,张灿,康燈杰. 历史大震烈度推算新方法研究. 灾害学. 2022(02): 212-217 .
    4. 张新毅,范小露. 淮河流域中游顺治年间地震灾害考证研究. 阜阳师范大学学报(社会科学版). 2021(02): 15-20 .
    5. 秦立科,陈国栋,甄刚,周萍,贾甲,张刚,张安兴. 地震作用下馆藏石碑稳定性分析. 文博. 2021(06): 90-97 .
    6. 刁守中,刁颋,李霞,山长仑,李红. 历史强余震史料考证原则及目录校订方案探索——以1668年郯城8?级地震强余震为例. 地震科学进展. 2020(05): 22-34 .
    7. 孙柏涛,闫佳琦,李山有. 宏观地震烈度发展与其用途的演变. 地震工程与工程振动. 2019(02): 1-8 .
    8. 刁守中,刁颋,李霞,山长仑. 中国陷落地震历史资料整理与研究. 国际地震动态. 2019(06): 3-13 .
    9. 席境忆. 东汉时期的地震记录及其时空分布. 防灾科技学院学报. 2019(03): 90-95 .
    10. 郭春杉,李文巧,田勤俭,徐岳仁,杜朋,刘双. 中条山北麓断裂解州段晚更新世滑动速率研究. 地震. 2019(04): 13-26 .
    11. 闫小兵,周永胜,李自红,郭瑾. 1695年临汾73/4级地震发震构造研究. 地震地质. 2018(04): 883-902 .
    12. 王师迪,师亚芹,任凤文. 公元600年秦陇地震发震构造分析及考证研究. 地质力学学报. 2018(02): 157-168 .
    13. Li Yuche,Shi Zhenliang,Cao Xuefeng. The Large Earthquake Offshore West of Seoul, Korea, in the Southern Yellow Sea on June 22, 1518. Earthquake Research in China. 2017(04): 601-608 .
    14. 周耀,韩阳. 地震应急疏散通道的坠落物控制策略探究——以郑州二七广场德化街组团为例. 中外建筑. 2017(01): 137-140 .
    15. 张志中. 中国古建筑的防震措施探讨. 震灾防御技术. 2017(01): 194-202 .
    16. 李裕澈,时振梁,曹学锋. 1518年6月22日韩国首尔以西海域——南黄海大震. 震灾防御技术. 2017(02): 363-368 .
    17. 韩晓飞,董斌,史双双,张龙飞. 1815年平陆6(3/4)级地震两种地震烈度对比研究以及震源地现今地震环境浅析. 工程地球物理学报. 2016(02): 241-244 .
    18. 金鑫,唐艳芳,叶正伟,何燕萍,王昆婷,杨松. 近2000年来江苏地震的时空分布特征. 淮阴师范学院学报(自然科学版). 2016(01): 51-56 .
    19. 金勇强. 至道二年(996年)潼关以西至灵州地震考. 西夏研究. 2014(04): 64-67 .
    20. 王德才,倪四道,李俊. 地震烈度快速评估研究现状与分析. 地球物理学进展. 2013(04): 1772-1784 .
    21. 林国良,王健. 基于烈度点的中国历史地震资料数据库系统试编制. 地震学报. 2012(01): 118-124+127 . 本站查看
    22. 金勇强. 《中国历史地震图集(远古至元时期)》所收录的宋代四次历史地震的正误. 宋史研究论丛. 2012(00): 404-422 .

    Other cited types(22)

Catalog

    Article views (858) PDF downloads (185) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return