Pan H,Zhang M. 2022. Risk-targeted seismic zoning maps. Acta Seismologica Sinica44(5):743−751. DOI: 10.11939/jass.20220161
Citation: Pan H,Zhang M. 2022. Risk-targeted seismic zoning maps. Acta Seismologica Sinica44(5):743−751. DOI: 10.11939/jass.20220161

Risk-targeted seismic zoning maps

More Information
  • Received Date: July 29, 2022
  • Revised Date: August 30, 2022
  • Available Online: September 13, 2022
  • Published Date: September 14, 2022
  • To ensure the consistency of building collapse risk within the country, a risk-targeted seismic zoning map is proposed. The risk integral method calculates the target risk by the convolution of the seismic hazard curve and the structural vulnerability curve. Currently, the use of risk-targeted seismic zoning maps has been widely used in practice in the United States, and related studies have been conducted in France, Romania, Canada, Indonesia, Europe and China. This article introduces the basic principles of using the risk integral method to determine the risk-targeted ground motion parameters and reviews the recent progress of research and application of this technique in China and abroad. In addition, we discuss the future development of risk-targeted seismic zoning maps and some of the problems may face.
  • 潘华,张萌,李金臣. 2017. 美国地震区划图的发展:地震危险性图与抗震设计图[J]. 震灾防御技术,12(3):511–522.
    Pan H,Zhang M,Li J C. 2017. Review of seismic zonation in United States,seismic hazard maps and seismic design maps[J]. Technology for Earthquake Disaster Prevention,12(3):511–522 (in Chinese).
    王丛,吕大刚. 2020. 基于抗震规范和地震动区划图的风险导向地震动决策参数分析[J]. 建筑结构学报,41(8):19–28. doi: 10.14006/j.jzjgxb.2018.0703
    Wang C,Lü D G. 2020. Analysis of risk-targeted decision parameters of seismic ground motions based on seismic design code and ground motion zonation map of China[J]. Journal of Building Structures,41(8):19–28 (in Chinese).
    张萌. 2021. 基于风险的地震动确定[D]. 北京: 中国地震局地球物理研究所: 45–48.
    Zhang M. 2021. Risk-Targeted Ground Motion and Its Application[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 45–48 (in Chinese).
    张萌, 潘华. 2022. 中国大陆地区建筑结构一致倒塌风险的设计地震动研究[J/OL]. 建筑结构学报. doi: 10.14006/j.jzjgxb.2021.0317.
    Zhang M, Pan H. 2022. Study on design ground motion for uniform collapse risk of building structures in mainland China[J/OL]. Journal of Building Structures. doi: 10.14006/j.jzjgxb.2021.0317 (in Chinese).
    张萌,潘华,李金臣. 2017. 美国建筑抗震设计的法规体系与设计地震动的确定[J]. 震灾防御技术,12(2):306–318. doi: 10.11899/zzfy20170207
    Zhang M,Pan H,Li J C. 2017. Building anti-seismic design regulations in the United States and its approach to ground motion design[J]. Technology for Earthquake Disaster Prevention,12(2):306–318 (in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB 18306—2015中国地震动参数区划图[S]. 北京: 中国标准出版社: 4.
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. 2016. GB 18306−2015 Seismic Ground Motion Parameters Zonation Map of China[S]. Beijing: Standards Press of China: 4 (in Chinese).
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB 50011—2010建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18−20.
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18−20 (in Chinese).
    Allen T I, Adams J, Halchuk S. 2015. The seismic hazard model for Canada: Past, present and future[C]//Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building: An Earthquake-Resilient Pacific. Sydney, Australia: Seismology Research Center: 5.
    ASCE. 2005. ASCE/SEI 43-05 Seismic Design Criteria for Structures, Systems, and Components In Nuclear Facilities[S]. Reston, Virginia: ASCE: 109−117.
    ASCE. 2010. ASCE 7-10 Minimum Design Loads for Buildings and Other Structures[S]. Reston, Virginia: American Society of Civil Engineers: 207−211.
    ATC. 1978. Tentative Provisions for the Development of Seismic Regulations for Buildings, Report ATC 3-06[R]. Washington D C: Applied Technology Council, National Bureau of Standards, U.S. Government Printing Office: 296−312.
    Douglas J,Ulrich T,Negulescu C. 2013. Risk-targeted seismic design maps for mainland France[J]. Nat Hazards,65(3):1999–2013. doi: 10.1007/s11069-012-0460-6
    Federal Emergency Management Agency, 1998. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part 1: Provisions[R]. Washington D C: Federal Emergency Management Agency, Building Seismic Safety Council: 10−18.
    Federal Emergency Management Agency. 2009. NEHRP Recommended Seismic Provisions for New Buildings and Other Structures: FEMAP-750[R]. Washington D C: Federal Emergency Management Agency: 21−28.
    Federal Emergency Management Agency. 2010. Earthquake-Resistant Design Concepts: An Introduction to the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures: FEMAP-749[R]. Washington D C: Federal Emergency Management Agency: 13−20.
    Iervolino I, Spillatura A, Bazzurro P. 2017. RINTC project: Assessing the (implicit) seismic risk of code-conforming structures in Italy[C]//6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Rhodes, Greece: Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA), Greece: 1545–1557.
    Kennedy R P, Short S A. 1994. Basis for Seismic Provisions of DOE-STD-1020[R]. Washington D C: USDOE: 1–4.
    Kennedy R P. 2011. Performance-goal based (risk informed) approach for establishing the SSE site specific response spectrum for future nuclear power plants[J]. Nucl Eng Des,241(3):648–656. doi: 10.1016/j.nucengdes.2010.08.001
    Kharazian A,Molina S,Galiana-Merino J J,Agea-Medina N. 2021. Risk-targeted hazard maps for Spain[J]. Bull Earthq Eng,19(13):5369–5389. doi: 10.1007/s10518-021-01189-8
    Liel A B, Luco N, Raghunandan M, Champion C P. 2015. Modifications to risk-targeted seismic design maps for subduction and near-fault hazards[C]//12th International Conference on Applications of Statistics and Probability in Civil Engineering. Vancouver, Canada: Civil Engineering Risk and Reliability Association: 1–8.
    Luco N, Ellingwood B R, Hamburger R O, Hooper J D, Kimball J K, Kircher C A. 2007. Risk-targeted versus current seismic design maps for the conterminous United States[C]//SEAOC 2007 Convention Proceedings. California: Structural Engineers Association of California: 1–7.
    McGuire R K. 2004. Seismic Hazard and Risk Analysis[M]. Oakland, CA: Earthquake Engineering Research Institute: 143–153.
    Sengara I W,Sidi I D,Mulia A,Asrurifak M,Hutabarat D. 2016. Development of risk coefficient for input to new Indonesian seismic building codes[J]. J Eng Technol Sci,48(1):49–65. doi: 10.5614/j.eng.technol.sci.2016.48.1.5
    Sengara I W, Irsyam M, Sidi I D, Mulia A, Asrurifak M, Hutabarat D, Partono W. 2020. New 2019 risk-targeted ground motions for spectral design criteria in Indonesian seismic building code[C/OL]. E3S Web Conf, 156(1): 03010.
    Silva V,Crowley H,Bazzurro P. 2016. Exploring risk-targeted hazard maps for Europe[J]. Earthq Spectra,32(2):1165–1186. doi: 10.1193/112514eqs198m
    Taherian A R,Kalantari A. 2019. Risk-targeted seismic design maps for Iran[J]. J Seismol,23:1299.
    Taherian A R,Kalantari A. 2021. Analysis of the risk-targeting approach to defining ground motion for seismic design:A case study of Iran[J]. Bull Earthq Eng,19(3):1289–1309. doi: 10.1007/s10518-020-01023-7
    USNRC. 2007. A Performance-Based Approach to Define the Site-Specific Earthquake Ground Motion[S]. Washington D C: USNRC: 17–18.
    Vacareanu R,Pavel F,Craciun I,Coliba V,Arion C,Aldea A,Neagu C. 2018. Risk-targeted maps for Romania[J]. J Seismol,22(2):407–417. doi: 10.1007/s10950-017-9713-x
  • Related Articles

  • Cited by

    Periodical cited type(15)

    1. 陈珍,郝冰,李远东,周正华,卞祝,韩轶. 含软弱土层场地地震动加速度反应谱特征周期调整方法. 地震学报. 2024(04): 734-750 . 本站查看
    2. 李平,陈钰鑫,高志寅,徐建元,乔峰,林明远. 不同场地类别对反应谱特征周期的影响. 地震学报. 2024(04): 724-733 . 本站查看
    3. 李平,范钟元,周楷,徐建元. 基于强震记录的土层结构放大作用研究——以SMASS台阵为例. 震灾防御技术. 2024(04): 661-674 .
    4. 郭婷婷,陈龙伟,吴晓阳,袁晓铭,李瑞山. 等效线性化方法计算深厚土层地震反应的可靠性研究. 振动与冲击. 2023(18): 172-179 .
    5. 李瑞山,吴进辉,陈龙伟,袁晓铭,李明睿. 软土场地地震动效应概率化模型. 岩土工程学报. 2023(S2): 189-194 .
    6. 王竞雄,李鸿晶,邢浩洁. 水平成层场地地震反应的集中质量切比雪夫谱元分析方法. 地震学报. 2022(01): 76-86 . 本站查看
    7. 齐文浩,王振清,薄景山,郑桐. 汶川地震汉源县城震害分布与场地反应分析. 哈尔滨工程大学学报. 2020(03): 383-389 .
    8. Wang Yushi,Li Xiaojun,Lan Riqing,Wang Ning,Chen Hongjuan. Development and Prospect of Study on Soil Nonlinear Dynamic Characteristics under Strong-Motion. Earthquake Research in China. 2017(01): 12-24 .
    9. 李平,刘红帅,薄景山,李孝波,于晓辉. 汶川M_S8.0地震河谷地形对汉源县城高烈度异常的影响. 地球物理学报. 2016(01): 174-184 .
    10. 刘方成,杨峻,武景芳. 软弱层几何特性与剪切波速对场地反应谱的影响研究. 防灾减灾工程学报. 2016(05): 773-784 .
    11. Liu Hongshuai,Bo Jingshan,Li Ping,Qi Wenhao,Zhang Yudong. Site amplification effects as an explanation for the intensity anomaly in the Hanyuan Town during the Wenchuan M_w 7.9 earthquake. Earthquake Engineering and Engineering Vibration. 2016(03): 435-444 .
    12. 王玉石,李小军,兰日清,王宁,陈红娟. 强震动作用下土体非线性动力特征研究发展与展望. 震灾防御技术. 2016(03): 480-492 .
    13. 李平,薄景山,袁一凡,肖瑞杰,刘红帅. 汶川地震中九襄断裂对汉源烈度异常的影响. 西南交通大学学报. 2015(06): 1055-1060+1073 .
    14. 齐文浩,陈龙伟,单振东,汪云龙. 芦山7.0级地震宏观场地效应. 地震工程与工程振动. 2013(04): 29-34 .
    15. 刘红帅,杨俊波,薄景山,刘宇. 汶川地震汉源县城高烈度异常区基岩地震动输入. 地震工程与工程振动. 2013(02): 27-36 .

    Other cited types(10)

Catalog

    Article views (499) PDF downloads (176) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return