Citation: | Du K,Li H Y,Li Y Z,Huang Y F. 2023. Microseismic detection and location around the Zipingpu reservoir and its adjacent areas. Acta Seismologica Sinica,45(6):970−984. DOI: 10.11939/jass.20230008 |
We relocate the 1017 earthquakes provided by the Sichuan Earthquake Agency and then use the 578 relocated earthquakes with a high signal-to-noise ratio as templates. The continuous waveform data recorded by 7 stations of Zipingpu reservoir seismic network from 2005 to 2008 are scanned by graphics processing unit-based match and locate (GPU-M&L) method. Then, based on the denoising results by applying the deep learning algorithm called DeepDenoiser, a convolutional neural network model is designed to further verify these newly detected events. Finally, the double-difference location method is used to accurately relocate them. A total of 16836 events are eventually identified, which is about 13 times as many as the events listed in the local catalog of Sichuan Earthquake Agency. The magnitude of completeness is reduced from ML1.4 given by the local catalog to ML−0.1. The relocated results show that the seismic events in the study area are linearly distributed in the northeast direction. The dominant focal depth indicates the location of the detachment layer in the crust of the region. Combined with the analysis results of b value and the focal depth, it is speculated that the earthquakes after impoundment in the study area are mainly natural seismic activities caused by the accumulation of tectonic stress, accompanied by the occurrence of reservoir-triggered seismicity.
程万正,张致伟,阮祥. 2010. 紫坪铺水库区不同蓄水阶段的地震活动及成因分析[J]. 地球物理学进展,25(3):759–767. doi: 10.3969/j.issn.1004-2903.2010.03.003
|
Cheng W Z,Zhang Z W,Ruan X. 2010. Analysis of seismicity and its causes in Zipingpu reservior region at each water storage stage[J]. Progress in Geophysics,25(3):759–767 (in Chinese).
|
丁原章,潘建雄,肖安予,沈立英,马汉雄,谬维成. 1983. 新丰江水库诱发地震的构造条件[J]. 地震地质,5(3):63–74.
|
Ding Y Z,Pan J X,Xiao A Y,Shen L Y,Ma H X,Miao W C. 1983. Tectonic environment of reservoir induced earthquake in the Xinfengjiang reservoir area[J]. Seismology and Geology,5(3):63–74 (in Chinese).
|
胡毓良,陈献程. 1979. 我国的水库地震及有关成因问题的讨论[J]. 地震地质,1(4):45–57.
|
Hu Y L,Chen X C. 1979. Discussion on the reservoir-induced earthquakes in China and some problems related to their origin[J]. Seismology and Geology,1(4):45–57 (in Chinese).
|
华卫,陈章立,郑斯华,晏纯清. 2012. 水库诱发地震与构造地震震源参数特征差异性研究:以龙滩水库为例[J]. 地球物理学进展,27(3):924–935.
|
Hua W,Chen Z L,Zheng S H,Yan C Q. 2012. Differences existing in characteristics of source parameters between reservoir induced seismicity and tectonic earthquake:A case study of Longtan reservoir[J]. Progress in Geophysics,27(3):924–935 (in Chinese).
|
姜金钟,付虹,陈棋福. 2016. 位于构造活跃区的小湾水库地震活动特征:基于地震精定位的分析[J]. 地球物理学报,59(7):2468–2485.
|
Jiang J Z,Fu H,Chen Q F. 2016. Characteristics of seismicity of the Xiaowan reservoir in an area of active tectonics from double-difference relocation analysis[J]. Chinese Journal of Geophysics,59(7):2468–2485 (in Chinese).
|
雷兴林,马胜利,闻学泽,苏金蓉,杜方. 2008. 地表水体对断层应力与地震时空分布影响的综合分析:以紫坪铺水库为例[J]. 地震地质,30(4):1046–1064.
|
Lei X L,Ma S L,Wen X Z,Su J R,Du F. 2008. Integrated analysis of stress and regional seismicity by surface loading:A case study of Zipingpu reservoir[J]. Seismology and Geology,30(4):1046–1064 (in Chinese).
|
李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁MS6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35.
|
Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).
|
李勇,周荣军,赵国华,苏德辰,闫亮,颜照坤,云锟. 2013. 龙门山前缘的芦山地震与逆冲-滑脱褶皱作用[J]. 成都理工大学学报(自然科学版),40(4):353–363.
|
Li Y,Zhou R J,Zhao G H,Su D C,Yan L,Yan Z K,Yun K. 2013. Thrusting and detachment folding of Lushan earthquake in front of Longmenshan mountains[J]. Journal of Chengdu University of Technology (Science &Technology Edition),40(4):353–363 (in Chinese).
|
刘雁冰,裴顺平. 2017. 汶川地震前后b值的时空变化及构造意义[J]. 地球物理学报,60(6):2104–2112. doi: 10.6038/cjg20170607
|
Liu Y B,Pei S P. 2017. Temporal and spatial variation of b-value before and after Wenchuan earthquake and its tectonic implication[J]. Chinese Journal of Geophysics,60(6):2104–2112 (in Chinese).
|
马文涛,徐长朋,张新东,徐锡伟,李海鸥,苑京立. 2011. 紫坪铺水库与汶川地震关系的讨论[J]. 地震地质,33(1):175–190.
|
Ma W T,Xu C P,Zhang X D,Xu X W,Li H O,Yuan J L. 2011. Study on the relationship between the reservoir-induced seismicity at Zipingpu reservoir and the MS8.0 Wenchuan earthquake[J]. Seismology and Geology,33(1):175–190 (in Chinese).
|
马文涛,蔺永,苑京立,李海鸥,徐长朋,罗佳宏. 2013. 水库诱发地震的震例比较与分析[J]. 地震地质,35(4):914–929. doi: 10.3969/j.issn.0253-4967.2013.04.020
|
Ma W T,Lin Y,Yuan J L,Li H O,Xu C P,Luo J H. 2013. Comparison and analysis on the basic features of reservoir-induced seismicity[J]. Seismology and Geology,35(4):914–929 (in Chinese).
|
杨智娴,于湘伟,郑月军,陈运泰,倪晓晞,Winston Chan. 2004. 中国中西部地区地震的重新定位和三维地壳速度结构[J]. 地震学报,26(1):19–29.
|
Yang Z X,Yu X W,Zheng Y J,Chen Y T,Ni X X,Chan W. 2004. Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in central-western China[J]. Acta Seismologica Sinica,26(1):19–29 (in Chinese). doi: 10.1007/BF03191391
|
张致伟,程万正,张永久,谢蓉华,傅莺. 2009. 汶川8.0级地震前紫坪铺水库小震活动及震源参数研究[J]. 中国地震,25(4):367–376. doi: 10.3969/j.issn.1001-4683.2009.04.003
|
Zhang Z W,Cheng W Z,Zhang Y J,Xie R H,Fu Y. 2009. Research on seismicity and source parameters of small earthquakes in the Zipingpu dam before Wenchuan MS8.0 earthquake[J]. Earthquake Research in China,25(4):367–376 (in Chinese).
|
周斌,薛世峰,邓志辉,孙峰,蒋海昆,张晓东,卢显. 2010. 水库诱发地震时空演化与库水加卸载及渗透过程的关系:以紫坪铺水库为例[J]. 地球物理学报,53(11):2651–2670.
|
Zhou B,Xue S F,Deng Z H,Sun F,Jiang H K,Zhang X D,Lu X. 2010. Relationship between the evolution of reservoir-induced seismicity in space-time and the process of reservoir water body load-unloading and water infiltration:A case study of Zipingpu reservoir[J]. Chinese Journal of Geophysics,53(11):2651–2670 (in Chinese).
|
周宏伟,佘云龙,李洪. 2007. 紫坪铺库区断层分布规律统计分析[J]. 工程地质学报,15(2):159–163. doi: 10.3969/j.issn.1004-9665.2007.02.003
|
Zhou H W,She Y L,Li H. 2007. Statistical analysis of fault distribution and lengths at Zipingpu hydropower project[J]. Journal of Engineering Geology,15(2):159–163 (in Chinese).
|
朱介寿. 2008. 汶川地震的岩石圈深部结构与动力学背景[J]. 成都理工大学学报(自然科学版),35(4):348–356. doi: 10.3969/j.issn.1671-9727.2008.04.002
|
Zhu J S. 2008. The Wenchuan earthquake occurrence background in deep structure and dynamics of lithosphere[J]. Journal of Chengdu University of Technology (Science &Technology Edition),35(4):348–356 (in Chinese).
|
Aki K. 1965. Maximum likelihood estimate of b in the formula logN=a−bM and its confidence limits[J]. Bull Earthq Res Inst Univ Tokyo,43(2):237–239.
|
Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
|
Chang C H,Wu Y M,Zhao L,Wu F T. 2007. Aftershocks of the 1999 Chi-Chi,Taiwan,earthquake:The first hour[J]. Bull Seismol Soc Am,97(4):1245–1258. doi: 10.1785/0120060184
|
Deng K,Zhou S Y,Wang R,Robinson R,Zhao C P,Cheng W Z. 2010. Evidence that the 2008 MW7.9 Wenchuan earthquake could not have been induced by the Zipingpu reservoir[J]. Bull Seismol Soc Am,100(5B):2805–2814. doi: 10.1785/0120090222
|
do Nascimento A F,Cowie P A,Lunn R J,Pearce R G. 2004. Spatio-temporal evolution of induced seismicity at Açu reservoir,NE Brazil[J]. Geophys J Int,158(3):1041–1052. doi: 10.1111/j.1365-246X.2004.02351.x
|
Grigoli F,Scarabello L,Böse M,Weber B,Wiemer S,Clinton J F. 2018. Pick- and waveform-based techniques for real-time detection of induced seismicity[J]. Geophys J Int,213(2):868–884. doi: 10.1093/gji/ggy019
|
Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185
|
Huang H,Meng L S,Plasencia M,Wang Y L,Wang L S,Xu M J. 2017. Matched-filter detection of the missing pre-mainshock events and aftershocks in the 2015 Gorkha,Nepal earthquake sequence[J]. Tectonophysics,714-715:71–81. doi: 10.1016/j.tecto.2016.08.018
|
Huang Y F,Zhang S Z,Lü Y J,Li Y Z,Zhang Y T,Liu M. 2020. Earthquake detection in the Jiangsu region,China using graphics-processing-unit-based match & locate and rapid earthquake association and location[J]. Earthq Sci,33(1):23–33. doi: 10.29382/eqs-2020-0023-03
|
Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of 32nd International Conference on Machine Learning. Lille: PMLR: 448−456.
|
Kao H,Shan S J. 2007. Rapid identification of earthquake rupture plane using source-scanning algorithm[J]. Geophys J Int,168(3):1011–1020. doi: 10.1111/j.1365-246X.2006.03271.x
|
Kerr R A,Stone R. 2009. A human trigger for the great quake of Sichuan?[J]. Science,323(5912):322. doi: 10.1126/science.323.5912.322
|
Kerr R A,Stone R. 2010. Two years later,new rumblings over origins of Sichuan quake[J]. Science,327(5970):1184. doi: 10.1126/science.327.5970.1184
|
Liu M,Li H Y,Zhang M,Wang T L. 2020. Graphics processing unit-based match and locate (GPU-M&L):An improved match and locate method and its application[J]. Seismol Res Lett,91(2A):1019–1029. doi: 10.1785/0220190241
|
Mekkawi M,Grasso J R,Schnegg P A. 2004. A long-lasting relaxation of seismicity at Aswan reservoir,Egypt,1982−2001[J]. Bull Seismol Soc Am,94(2):479–492. doi: 10.1785/0120030067
|
Meng X F,Peng Z G,Hardebeck J L. 2013. Seismicity around Parkfield correlates with static shear stress changes following the 2003 MW6.5 San Simeon earthquake[J]. J Geophys Res:Solid Earth,118(7):3576–3591. doi: 10.1002/jgrb.50271
|
Meng X F,Peng Z G. 2016. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto fault suggests triggering of deep creep in the middle crust[J]. Geophys J Int,204(1):250–261. doi: 10.1093/gji/ggv445
|
Murru M,Console R,Falcone G,Montuori C,Sgroi T. 2007. Spatial mapping of the b value at Mount Etna,Italy,using earthquake data recorded from 1999 to 2005[J]. J Geophys Res:Solid Earth,112(B12):B12303. doi: 10.1029/2006JB004791
|
Peng Z G,Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nat Geosci,2(12):877–881. doi: 10.1038/ngeo697
|
Pesicek J D,Child D,Artman B,Cieślik K. 2014. Picking versus stacking in a modern microearthquake location:Comparison of results from a surface passive seismic monitoring array in Oklahoma[J]. Geophysics,79(6):KS61–KS68. doi: 10.1190/geo2013-0404.1
|
Ruan X,Meng X F,Peng Z G,Long F,Xie R H. 2017. Microseismic activity in the last five months before the MW7.9 Wenchuan earthquake[J]. Bull Seismol Soc Am,107(4):1582–1592.
|
Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bull Seismol Soc Am,58(1):399–415. doi: 10.1785/BSSA0580010399
|
Shelly D R,Beroza G C,Ide S. 2007. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature,446(7133):305–307. doi: 10.1038/nature05666
|
Srivastava N,Hinton G,Krizhevsky A,Sutskever I,Salakhutdinov R. 2014. Dropout:A simple way to prevent neural networks from overfitting[J]. J Mach Learn Res,15(1):1929–1958.
|
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
|
Walter J I,Meng X F,Peng Z G,Schwartz S Y,Newman A V,Protti M. 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW7.6) Nicoya Peninsula,Costa Rica earthquake[J]. Earth Planet Sci Lett,431:75–86. doi: 10.1016/j.jpgl.2015.09.017
|
Wiemer S. 2001. A software package to analyze seismicity:ZMAP[J]. Seismol Res Lett,72(3):373–382. doi: 10.1785/gssrl.72.3.373
|
Wiemer S,Benoit J P. 1996. Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones[J]. Geophys Res Lett,23(13):1557–1560. doi: 10.1029/96GL01233
|
Withers M,Aster R,Young C,Beiriger J,Harris M,Moore S,Trujillo J. 1998. A comparison of select trigger algorithms for automated global seismic phase and event detection[J]. Bull Seismol Soc Am,88(1):95–106. doi: 10.1785/BSSA0880010095
|
Woessner J,Wiemer S. 2005. Assessing the quality of earthquake catalogues:Estimating the magnitude of completeness and its uncertainty[J]. Bull Seismol Soc Am,95(2):684–698. doi: 10.1785/0120040007
|
Yang Z X,Waldhauser F,Chen Y T,Richards P G. 2005. Double-difference relocation of earthquakes in central-western China,1992−1999[J]. J Seismol,9(2):241–264. doi: 10.1007/s10950-005-3988-z
|
Zhang M,Wen L X. 2015. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466
|
Zhang M,Ellsworth W L,Beroza G C. 2019. Rapid earthquake association and location[J]. Seismol Res Lett,90(6):2276–2284. doi: 10.1785/0220190052
|
Zhang S J,Zhou S Y. 2016. Spatial and temporal variation of b-values in southwest China[J]. Pure Appl Geophys,173(1):85–96. doi: 10.1007/s00024-015-1044-7
|
Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
|
Zhu W Q,Mousavi S M,Beroza G C. 2019. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Trans Geosci Remote Sens,57(11):9476–9488. doi: 10.1109/TGRS.2019.2926772
|