Su H,Cui Q H,Li G H,Yin D,Zhou Y Z. 2025. Morphological structure of stagnant slab under southern Japan and Ryukyu Island Arc based on seismic waveform fitting. Acta Seismologica Sinica47(1):37−53. DOI: 10.11939/jass.20230150
Citation: Su H,Cui Q H,Li G H,Yin D,Zhou Y Z. 2025. Morphological structure of stagnant slab under southern Japan and Ryukyu Island Arc based on seismic waveform fitting. Acta Seismologica Sinica47(1):37−53. DOI: 10.11939/jass.20230150

Morphological structure of stagnant slab under southern Japan and Ryukyu Island Arc based on seismic waveform fitting

More Information
  • Received Date: November 24, 2023
  • Revised Date: May 24, 2024
  • Accepted Date: May 28, 2024
  • Available Online: January 02, 2025
  • Under southern Japan and Ryukyu Island Arc, the Pacific plate and the Philippine Sea plate both subducted under the Eurasian plate, forming a complex double-plate subduction system. Statistical results of seismic activity reflect that there are significant differences in the influence of the two subducted plates on the mantle transition zone. It is currently unclear whether the stagnant slab beneath this region is a single Pacific plate or a mixed stagnant body consisting of the Pacific plate and the Philippine Sea plate. The properties, geometric characteristics, and morphological changes, as well as its interaction with the mantle material, collectively affect the tectonic evolution of the East China Sea Shelf Basin and the Chinese continental margin. The accumulation of the stagnant slab within the mantle transition zone and its interaction with the mantle material can cause variations in the depth of the 660 km discontinuity at the bottom of the mantle transition zone. Cold stagnant slab material induces depression of the 660 km discontinuity. By studying the depth of the 660 km discontinuity and its nearby velocity structure, we can explore the depth variation characteristics of the stagnant slab in the mantle transition zone beneath the southern Japan and Ryukyu Island Arc, obtain the lateral differences of the plate subduction process. This will deepen our understanding of the integrity of plate subduction in the Northwest Pacific Ocean and contribute to the study of the geodynamic processes of plate subduction. When the seismic wave passes through the 660 km discontinuity, the triplicated seismic phases will be generated. Utilizing the arrival times and amplitude characteristics of the triplicated waveforms recorded by a dense seismic network, we can effectively constrain the morphology of the discontinuity and the velocity structure near it.

    In this study, we selected a deep earthquake that occurred in the Izu-Bonin recorded by the China National Seismic Network (CNSN). The earthquake had a focal depth of 472 km, which avoided the influence of the triplicated waveforms associated with the 410 km discontinuity. The surface projections of the P-wave turning points are located in the southern Japan and Ryukyu Island Arc, and the characteristics of the triplicated waveforms can be used to constrain the depth of the 660 km discontinuity and its nearby velocity structure. Through identification and analysis of the morphological characteristics in P-wave triplicated waveforms, we divided the study area into 13 profiles, delineating horizontal differences in velocity structures based on distinct features of triplicated waveforms features. Building upon previous research findings and the characteristics of observed waveforms, we constructed a foundational velocity structure model. Employing a grid search methodology, we generated various parameter models. Theoretical seismic waveforms were subsequently computed using reflectivity method and compared against observed waveforms. The optimal velocity structure was determined via maximization of cross-correlation coefficients. Specifically, during the fitting process of P-wave triplicated waveforms, we refined waveform selection to minimize interference from non-triplicated waveforms, thereby augmenting fitting precision.

    Our results reveal that: ① There is a high-velocity layer above the 660 km discontinuity with depth of 490−720 km and P-wave velocity anomaly of 1.0%−3.0%; ② The 660 km discontinuity depressed 20−60 km with velocity increment of 1.5%−3.0%, and the depression depth gradually decreases from south to north.

    Drawing on insights gleaned from seismic tomography and tele-seismic data, we propose that the thickness of the high-velocity anomaly layer above the 660 km discontinuity significantly surpasses that of the subducting Pacific slab. This discrepancy likely arises from the halting of the downward motion of the subducted oceanic slab within the mantle transition zone by the 660 km discontinuity. This interruption triggers a lateral shift in motion, leading to the entrapment and subsequent buildup of the slab material within the mantle transition zone. Moreover, compared to previous studies based on seismic activity and tomography, our findings position the high-velocity anomaly layer at a depth deeper than typically reachable by the subduction of the Philippine Sea Plate, suggesting its composition primarily comprises material from the stagnant western Pacific slab rather than from the Philippine Sea Plate. Additionally, the depression of the 660 km discontinuity ranges from 20 to 80 km, exceeding depths attributed solely to thermal anomalies. We suggest that this depression may also involve phase transformations within the stagnant material brought by the subducted slab. The gradual reduction in depression depth from south to north likely reflects variations in subduction dynamics along the north-south direction.

  • 崔辉辉,周元泽. 2016. 基于三重震相方法探测日本海俯冲区地幔转换带的速度结构[J]. 地震学报,38(5):659–670. doi: 10.11939/jass.2016.05.001
    Cui H H,Zhou Y Z. 2016. Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications[J]. Acta Seismologica Sinica,38(5):659–670 (in Chinese).
    崔辉辉,周元泽,石耀霖,王晓冉,李国辉. 2016. 华北克拉通东部滞留板块下方低速异常的地震三重震相探测[J]. 地球物理学报,59(4):1309–1320.
    Cui H H,Zhou Y Z,Shi Y L,Wang X R,Li G H. 2016. Seismic detection of a low-velocity anomaly under the stagnant slab beneath the eastern North China Craton with P-wave triplication[J]. Chinese Journal of Geophysics,59(4):1309–1320 (in Chinese).
    地震科学国际数据中心. 2022. 地震科学国际数据中心[DB/OL]. [2023−11−25]. http://www.esdc.ac.cn:8080/static/frontSharePage.html.
    International Earthquake Science Data Center. 2022. International Earthquake Science Data Center[DB/OL]. [2023−11−25]. http://www.esdc.ac.cn:8080/static/frontSharePage.html (in Chinese).
    瞿辰,周蕙兰,赵大鹏. 2007. 使用纵波和横波走时层析成像研究菲律宾海板块西边缘带和南海地区的深部结构[J]. 地球物理学报,50(6):1757–1768.
    Qu C,Zhou H L,Zhao D P. 2007. Deep structure beneath the west margin of Philippine Sea Plate and South China Sea from P and S wave travel time tomography[J]. Chinese Journal of Geophysics,50(6):1757–1768 (in Chinese).
    苏慧,魏荣强,周元泽,崔清辉,李国辉. 2023. 东北亚边缘地区地幔过渡带内滞留太平洋板片上界面的三重震相研究[J]. 地球物理学报,66(6):2431–2444.
    Su H,Wei R Q,Zhou Y Z,Cui Q H,Li G H. 2023. Upper interface of the Pacific slab stagnant in the mantle transition zone beneath Northeast Asia edge derived from triplicated waveforms[J]. Chinese Journal of Geophysics,66(6):2431–2444 (in Chinese).
    眭怡,周元泽. 2015. 利用三重震相探测中国东部海域410km深度低速层[J]. 地震学报,37(1):1–14.
    Sui Y,Zhou Y Z. 2015. Low-velocity anomaly around 410 km beneath the Yellow and East China Seas with P wave triplications[J]. Acta Seismologica Sinica,37(1):1–14 (in Chinese).
    叶玲玲,李娟. 2012. 东北地区660km间断面附近波速结构研究[J]. 地震学报,34(2):137–146.
    Ye L L,Li J. 2012. Detecting velocity structure around 660-km discontinuity beneath northeastern China[J]. Acta Seismologica Sinica,34(2):137–146 (in Chinese).
    张炎,钮凤林,宁杰远. 2022. 基于程函方程与三维速度模型的中国东北地区地幔过渡带接收函数研究[J]. 地球物理学报,65(8):2945–2959.
    Zhang Y,Niu F L,Ning J Y. 2022. Mantle transition zone beneath northeast China imaged by receiver function data using fast marching Eikonal solver based 3-D migration[J]. Chinese Journal of Geophysics,65(8):2945–2959 (in Chinese).
    周春银,金振民,章军锋. 2010. 地幔转换带:地球深部研究的重要方向[J]. 地学前缘,17(3):90–113.
    Zhou C Y,Jin Z M,Zhang J F. 2010. Mantle transition zone:An important field in the studies of Earth’s deep interior[J]. Earth Science Frontiers,17(3):90–113 (in Chinese).
    Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophys Geosyst,4(3):1027.
    Buland R,Chapman C H. 1983. The computation of seismic travel times[J]. Bull Seismol Soc Am,73(5):1271–1302.
    Cammarano F,Goes S,Vacher P,Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities[J]. Phys Earth Planet Inter,138(3/4):197–222.
    Chu R S,Schmandt B,Helmberger D V. 2012. Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms[J]. Geochem Geophys Geosyst,13(2):Q0AK04.
    Chu R S,Zhu L P,Ding Z F. 2019. Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms[J]. Earth and Planetary Physics,3(5):445–459. doi: 10.26464/epp2019045
    Courtier A M,Bagley B,Revenaugh J. 2007. Whole mantle discontinuity structure beneath Hawaii[J]. Geophys Res Lett,34(17):L17304.
    Deuss A. 2007. Seismic observations of transition-zone discontinuities beneath hotspot locations[M]//Plates,Plumes,and Planetary Processes. Boulder:Geological Society of America:121−136.
    Dziewoński A M,Chou T A,Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res Solid Earth,86(B4):2825–2852. doi: 10.1029/JB086iB04p02825
    Ekström G,Nettles M,Dziewoński A M. 2012. The global CMT project 2004−2010:Centroid-moment tensors for 13,017 earthquakes[J]. Phys Earth Planet Inter,200-201:1–9. doi: 10.1016/j.pepi.2012.04.002
    Engdahl E R,Van Der Hilst R,Buland R. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination[J]. Bull Seismol Soc Am,88(3):722–743. doi: 10.1785/BSSA0880030722
    Fei Y,Van Orman J,Li J,van Westrenen W,Sanloup C,Minarik W,Hirose K,Komabayashi T,Walter M,Funakoshi K. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications[J]. J Geophys Res Solid Earth,109(B2):B02305.
    Fossen H. 2010. Structural Geology[M]. Cambridge:Cambridge University Press:79-83.
    Fukao Y,Widiyantoro S,Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region[J]. Rev Geophys,39(3):291–323. doi: 10.1029/1999RG000068
    Fukao Y,Obayashi M. 2013. Subducted slabs stagnant above,penetrating through,and trapped below the 660 km discontinuity[J]. J Geophys Res Solid Earth,118(11):5920–5938. doi: 10.1002/2013JB010466
    Gao Y,Suetsugu D,Fukao Y,Obayashi M,Shi Y T,Liu R F. 2010. Seismic discontinuities in the mantle transition zone and at the top of the lower mantle beneath eastern China and Korea:Influence of the stagnant Pacific slab[J]. Phys Earth Planet Inter,183(1/2):288–295.
    Goes S,Agrusta R,Van Hunen J,Garel F. 2017. Subduction-transition zone interaction:A review[J]. Geosphere,13(3):644–664. doi: 10.1130/GES01476.1
    Gorbatov A,Kennett B L N. 2003. Joint bulk-sound and shear tomography for Western Pacific subduction zones[J]. Earth Planet Sci Lett,210(3/4):527–543.
    Gudmundsson Ó,Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model[J]. J Geophys Res Solid Earth,103(B4):7121–7136. doi: 10.1029/97JB02488
    Hall R,Ali J R,Anderson C D,Baker S J. 1995. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics,251(1/2/3/4):229–250.
    Huang J L,Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res Solid Earth,111(B9):B09305.
    Ito E,Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications[J]. J Geophys Res Solid Earth,94(B8):10637–10646. doi: 10.1029/JB094iB08p10637
    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton[J]. J Geophys Res Solid Earth,117(B6):B06313.
    Li C,Van Der Hilst R D,Engdahl E R,Burdick S. 2008. A new global model for P wave speed variations in Earth’s mantle[J]. Geochem Geophys Geosyst,9(5):Q05018.
    Li G H,Bai L,Zhou Y Z,Wang X R,Cui Q H. 2017. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau[J]. Tectonophysics,721:349–360. doi: 10.1016/j.tecto.2017.08.009
    Li G H,Bai L,Zhang H,Xu Q,Zhou Y Z,Gao Y,Wang M J S,Li Z H. 2022. Velocity anomalies around the mantle transition zone beneath the Qiangtang Terrane,Central Tibetan Plateau from triplicated P waveforms[J]. Earth Space Sci,9(2):e2021EA002060. doi: 10.1029/2021EA002060
    Li J,Wang X,Wang X J,Yuen D A. 2013. P and SH velocity structure in the upper mantle beneath Northeast China:Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth Planet Sci Lett,367:71–81. doi: 10.1016/j.jpgl.2013.02.026
    Li W L,Wei R Q,Cui Q H,Li G H,Zhou Y Z. 2020. P-wave velocity anomalies atop and in the mantle transition zone beneath the northern South China Sea from triplicated waveforms[J]. J Asian Earth Sci,197:104379. doi: 10.1016/j.jseaes.2020.104379
    Miller M S,Kennett B L N,Toy V G. 2006. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin[J]. J Geophys Res Solid Earth,111(B2):B02401.
    Niu F L,Levander A,Ham S,Obayashi M. 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions[J]. Earth Planet Sci Lett,239(1/2):9–17.
    Obayashi M,Sugioka H,Yoshimitsu J,Fukao Y. 2006. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity[J]. Earth Planet Sci Lett,243(1/2):149–158.
    Tajima F,Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone[J]. Geophys Res Lett,22(23):3139–3142. doi: 10.1029/95GL03314
    Tajima F,Grand S P. 1998. Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu[J]. J Geophys Res Solid Earth,103(B7):15015–15036. doi: 10.1029/98JB00752
    Tonegawa T,Hirahara K,Shibutani T. 2005. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses[J]. Earth Planets Space,57(1):5–14. doi: 10.1186/BF03351801
    Wang B S,Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. J Geophys Res,115(B6):B06308.
    Wang B S,Niu F L. 2011. Spatial variations of the 660-km discontinuity in the western Pacific subduction zones observed from CEArray triplication data[J]. Earthquake Science,24(1):77–85. doi: 10.1007/s11589-011-0771-9
    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions[J]. Bull Seismol Soc Am,89(3):733–741. doi: 10.1785/BSSA0890030733
    Wang T,Chen L. 2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia[J]. Phys Earth Planet Inter,172(3/4):241–256.
    Wang Y,Wen L X,Weidner D,He Y M. 2006. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J]. J Geophys Res,111(B7):B07305.
    Wang Z,Huang R Q,Huang J L,He Z H. 2008. P-wave velocity and gradient images beneath the Okinawa Trough[J]. Tectonophysics,455(1/2/3/4):1–13.
    Wei W,Zhao D P,Xu J D,Wei F X,Liu G M. 2015. P and S wave tomography and anisotropy in Northwest Pacific and East Asia:Constraints on stagnant slab and intraplate volcanism[J]. J Geophys Res Solid Earth,120(3):1642–1666. doi: 10.1002/2014JB011254
    Weston J,Engdahl E R,Harris J,Di Giacomo D,Storchak D A. 2018. ISC-EHB:Reconstruction of a robust earthquake data set[J]. Geophys J Int,214(1):474–484. doi: 10.1093/gji/ggy155
    Yamamoto Y,Takahashi T,Ishihara Y,Kaiho Y,Arai R,Obana K,Nakanishi A,Miura S,Kodaira S,Kaneda Y. 2018. Modeling the geometry of plate boundary and seismic structure in the southern Ryukyu trench subduction zone,Japan,using amphibious seismic observations[J]. J Geophys Res Solid Earth,123(2):1793–1809. doi: 10.1002/2017JB015330
    Yao Z W,Li C F,He G Y,Tao T S,Zheng X L,Zhang T,Tang X J,Zhao T L. 2020. Cenozoic sill intrusion in the central and southern East China Sea Shelf Basin[J]. Mar Petrol Geol,119:104465. doi: 10.1016/j.marpetgeo.2020.104465
    Zhang R Q,Gao Z Y,Wu Q J,Xie Z X,Zhang G C. 2016. Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean Craton from P-wave receiver functions[J]. Tectonophysics,675:159–167. doi: 10.1016/j.tecto.2016.03.002
    Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs:Insight into deep Earth dynamics[J]. Phys Earth Planet Inter,146(1/2):3–34.
    Zhao D P,Tian Y,Lei J S,Liu L,Zheng S H. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:Role of big mantle wedge above the stagnant Pacific slab[J]. Phys Earth Planet Inter,173(3/4):197–206.
    Zhao D P,Yanada T,Hasegawa A,Umino N,Wei W. 2012. Imaging the subducting slabs and mantle upwelling under the Japan Islands[J]. Geophys J Int,190(2):816–828. doi: 10.1111/j.1365-246X.2012.05550.x
    Zhao D P,Liu X,Hua Y Y. 2018. Tottori earthquakes and Daisen volcano:Effects of fluids,slab melting and hot mantle upwelling[J]. Earth Planet Sci Lett,485:121–129. doi: 10.1016/j.jpgl.2017.12.040
    Zhao D P,Wang J,Huang Z C,Liu X. 2021. Seismic structure and subduction dynamics of the western Japan arc[J]. Tectonophysics,802:228743. doi: 10.1016/j.tecto.2021.228743
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 夏文鹤,谢万洋,唐印东,李皋,韩玉娇. 砂样岩屑图像特征的岩性智能高效识别. 石油地球物理勘探. 2023(03): 495-506 .

    Other cited types(1)

Catalog

    Article views (89) PDF downloads (25) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return