LIU HANXING, WANG SUYUN, SHI ZHENLIANGcom sh advance. 1989: A GROUND MOTION ATTENUATION MODEL DEPENDENT ON THE RUPTURE DIRECTION OF SEISMIC SOURCE. Acta Seismologica Sinica, 11(1): 24-37.
Citation: LIU HANXING, WANG SUYUN, SHI ZHENLIANGcom sh advance. 1989: A GROUND MOTION ATTENUATION MODEL DEPENDENT ON THE RUPTURE DIRECTION OF SEISMIC SOURCE. Acta Seismologica Sinica, 11(1): 24-37.

A GROUND MOTION ATTENUATION MODEL DEPENDENT ON THE RUPTURE DIRECTION OF SEISMIC SOURCE

More Information
  • Published Date: September 01, 2011
  • In this paper,the expressions of peak ground motion acceleration and r. m. s acceleration have been derived,based on the Haskell's co-cube radiated spectrum of source model,plus the terms of anelastic attenuation,geometrical spreading and enlargement factor of free surface. Then,a ground motion attenuation model depsndent on the rupture direction of the seismic source from the expressions has been recommended. The formula is as the following: In (a) = C0+ C1Mw+ C21nR+ C3R+C41n(D())+C5d()+C6S Where a is a parameter of peak acceleration or RMS acceleration for the directivity functions of D() and d(),respectively.The results of uni-magnitude regressions indicated that the model proposed in this paper is more adequate than the euqi-distance circle model,utilizing the acceleration data of the Morgan Hill and Imperial Valley earthquakes which abound with ground motion records. Standard deviations may be reduced by 0.1 to 0.2,compiring the model developed in this paper with the conventional attenuation model,for instance,the Joyner and Boore's model. The ground motion attenuation model dependent on rupture direction of seismic source developed in this paper may be applied to earthquakes with different patterns of faults,for example,to unilateral or bilateral strik-slip and dip-slip rupture and reverse rupture patterns. The inadequacy of the circle distribuation of Cornell's piont source model and the narrow-long ellipse distribua-tion of fault rupture model with equi-distance also may be improved. Finally,The formulas of PGA and RMS accelerations attenuation dependent on the rupture direction of the seismic source are presented for the Western United States.
  • [1] Boore, D. M,1983. Strong——motion seismology. Reu. Gcophys. and J'pace Phys., 21, 1308——1318.

    [2] Campbell, K. W., 1985. Strong motion attenuation relations; Aten——year perspective. Eart/rguake Spectra,1, 799——804.

    [3] Scholl, R. E. and King, J. L., 1984. Proceedings of workshop on strong ground motion simulation and ear——thquake engineering application. A Technological Assessment, EER1, Berkeley, California.

    [4] BcniofF, H,1965. Mechanism and strain characteristics of the White Wolf as indicated by the aftershock sequence, Earthquake in Kern County, California during 1955. Calif. Dsv. Mines Bull., 171, 199——202.

    [5] McGuire, R. K., and Hanks, T. C., 1980. RMS accelerations and spectral amplitude of strong motion during the San Fernando,California earthquake. Bull. Seirm. Soc. Amer. 70, 1907——1919.

    [6] Archuleta, R. J., 1979. Rupture propagation effects in the Coyote Lake earthquake (abstract). E05. Traps ,Am, Geophys. Union. 60, 890.

    [7] Swanger, H. J., Day, S. M., Murphy, J. R. and Guzman, R., 1981. State——of——Art study concerning near——field earthquake ground motion. U. S. Nuclear Reg. Contra. NUKEG/CR——1978.

    [8] Bnatwright, J. and Boore, D. M., 1982. Analysis of the ground acceleration radiation by the 1980 Livermore Valley earthquake for directivity and dyhamic source characteristics. Bull. Seism. Soc. Amer. 72, 1843——1865.

    [9] Abrahamson, A, and Robert B. Darragh, 1985. The Morgan Hill earthquake of April 24, 1984——the 1.29g acceleration at Coyote Lake Dam: due to directiviy, a double event, or hoth. Earthquake Spectra, 1, 445——455.

    [10] Haskell, N, A., 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seism. Sac. Anzer. 54, 1811——1842.

    [11] Haskell, N. A., 1966. Total energy and energy spectral density of elastic wave radiation from propagating faults, 2, astatistical source model. Bull. Seism Soc. Anzer. 56, 125——140

    [12] Aki, K., 1967. Sealing law of seismic spectrum J. Ceophys. Rcs., 72, 1217——1231.

    [13] Savage, T. C,1972. Relation of corner frequency tto fault dimension. J. Ceophyr. Res. 77, 3788——3795.

    [14] Faccioli, E., 1984. Measures of strong ground motion derived from a stochastic source model, Proceeding of the International School of Physics, Enrico Fermi, Earthquakes Observation, Theory and Interpretation.

    [15] K. Aki, 1980. Attenuation of shear——waves in the lithosphere for frequencies from 0.5——25Hz. Phys. Earth Planet.Int. 21, 50——60.

    [16] Hanks, T. C. and Kanamort, H 1979. A moment magnitude scale. J. Geophys. Res. 84, 2348——2350

    [17] Joyner, W. B, and Boore, D. M., 1981. Peak horizontal acceleration and velocity from Strong——motion records including records from the 1979 Imperial valley, California earthquake Bull. Seism. Soc. Amer 71,2011——2038

    [18] Campbell, K. W., 1981. Near——field source attenuation of peak liorizontal acceleration. Bull.Seism.Seism. Soc. Amer. 71 .2039——2070.

    [19] Kavazanjmn, E., H. Ecliezuria and McCanu, M. W., 1985. RMS acceleration liazard for San Franciso.Soil Dynam. Earthquake Eng., 4, 106——123.

    [20] Vanmarke, E. H. and Lai, S. P., 1980. Strong motion duration and RMS amplitude of earthquake records. Bull. Seism. Soc. Amen, 70, 1293——1307.

    [21] Bolt, B. A., Uhrammer, R. A. and Darragh, R. B,1)85. Murgan Htll earthquake of April 24, 1984 seismological aspects. Earthquake Spectra, 1, 407——415.

    [22] Archuleta, R. J., 1984. A faulting model for the 1979 Intpcrial Val;ev earthduake. J Geophys. Res,8 9,4559——4585.

    [23] Madariaga, R., 1983 High frequency radiation frc;u the dynamic e;trtlpuake fault models. ilunales Geo——physcae, 1. 17——23.

    [24] Upadhyay, S. K,and Annja, A. K., 1982. Azimuthal variation of acceleration spectral density near fault, VII Symp. on Earthquake Eug., 1, 89——92.

    [25] Weisherg, S,1980. Applied linear regression, Wiley, New York, 283.

    [26] Campbell, K. W., 1986. An empirical estimate of near——source gruund n,ution for a major mb: 6.8 earthquake in the Eastern United States. Bull. Seism. Soc. Amer,76, 1——17.

    [27] Campillo, M. and Bouchon, M., 1983. A theoretical study of the radiation from small strike——slip earthquake at close distances. Bull. Seism. Soc. Amen. 75. 81——96.

    [1] Boore, D. M,1983. Strong——motion seismology. Reu. Gcophys. and J'pace Phys., 21, 1308——1318.

    [2] Campbell, K. W., 1985. Strong motion attenuation relations; Aten——year perspective. Eart/rguake Spectra,1, 799——804.

    [3] Scholl, R. E. and King, J. L., 1984. Proceedings of workshop on strong ground motion simulation and ear——thquake engineering application. A Technological Assessment, EER1, Berkeley, California.

    [4] BcniofF, H,1965. Mechanism and strain characteristics of the White Wolf as indicated by the aftershock sequence, Earthquake in Kern County, California during 1955. Calif. Dsv. Mines Bull., 171, 199——202.

    [5] McGuire, R. K., and Hanks, T. C., 1980. RMS accelerations and spectral amplitude of strong motion during the San Fernando,California earthquake. Bull. Seirm. Soc. Amer. 70, 1907——1919.

    [6] Archuleta, R. J., 1979. Rupture propagation effects in the Coyote Lake earthquake (abstract). E05. Traps ,Am, Geophys. Union. 60, 890.

    [7] Swanger, H. J., Day, S. M., Murphy, J. R. and Guzman, R., 1981. State——of——Art study concerning near——field earthquake ground motion. U. S. Nuclear Reg. Contra. NUKEG/CR——1978.

    [8] Bnatwright, J. and Boore, D. M., 1982. Analysis of the ground acceleration radiation by the 1980 Livermore Valley earthquake for directivity and dyhamic source characteristics. Bull. Seism. Soc. Amer. 72, 1843——1865.

    [9] Abrahamson, A, and Robert B. Darragh, 1985. The Morgan Hill earthquake of April 24, 1984——the 1.29g acceleration at Coyote Lake Dam: due to directiviy, a double event, or hoth. Earthquake Spectra, 1, 445——455.

    [10] Haskell, N, A., 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull. Seism. Sac. Anzer. 54, 1811——1842.

    [11] Haskell, N. A., 1966. Total energy and energy spectral density of elastic wave radiation from propagating faults, 2, astatistical source model. Bull. Seism Soc. Anzer. 56, 125——140

    [12] Aki, K., 1967. Sealing law of seismic spectrum J. Ceophys. Rcs., 72, 1217——1231.

    [13] Savage, T. C,1972. Relation of corner frequency tto fault dimension. J. Ceophyr. Res. 77, 3788——3795.

    [14] Faccioli, E., 1984. Measures of strong ground motion derived from a stochastic source model, Proceeding of the International School of Physics, Enrico Fermi, Earthquakes Observation, Theory and Interpretation.

    [15] K. Aki, 1980. Attenuation of shear——waves in the lithosphere for frequencies from 0.5——25Hz. Phys. Earth Planet.Int. 21, 50——60.

    [16] Hanks, T. C. and Kanamort, H 1979. A moment magnitude scale. J. Geophys. Res. 84, 2348——2350

    [17] Joyner, W. B, and Boore, D. M., 1981. Peak horizontal acceleration and velocity from Strong——motion records including records from the 1979 Imperial valley, California earthquake Bull. Seism. Soc. Amer 71,2011——2038

    [18] Campbell, K. W., 1981. Near——field source attenuation of peak liorizontal acceleration. Bull.Seism.Seism. Soc. Amer. 71 .2039——2070.

    [19] Kavazanjmn, E., H. Ecliezuria and McCanu, M. W., 1985. RMS acceleration liazard for San Franciso.Soil Dynam. Earthquake Eng., 4, 106——123.

    [20] Vanmarke, E. H. and Lai, S. P., 1980. Strong motion duration and RMS amplitude of earthquake records. Bull. Seism. Soc. Amen, 70, 1293——1307.

    [21] Bolt, B. A., Uhrammer, R. A. and Darragh, R. B,1)85. Murgan Htll earthquake of April 24, 1984 seismological aspects. Earthquake Spectra, 1, 407——415.

    [22] Archuleta, R. J., 1984. A faulting model for the 1979 Intpcrial Val;ev earthduake. J Geophys. Res,8 9,4559——4585.

    [23] Madariaga, R., 1983 High frequency radiation frc;u the dynamic e;trtlpuake fault models. ilunales Geo——physcae, 1. 17——23.

    [24] Upadhyay, S. K,and Annja, A. K., 1982. Azimuthal variation of acceleration spectral density near fault, VII Symp. on Earthquake Eug., 1, 89——92.

    [25] Weisherg, S,1980. Applied linear regression, Wiley, New York, 283.

    [26] Campbell, K. W., 1986. An empirical estimate of near——source gruund n,ution for a major mb: 6.8 earthquake in the Eastern United States. Bull. Seism. Soc. Amer,76, 1——17.

    [27] Campillo, M. and Bouchon, M., 1983. A theoretical study of the radiation from small strike——slip earthquake at close distances. Bull. Seism. Soc. Amen. 75. 81——96.

Catalog

    Article views (1285) PDF downloads (133) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return