Citation: | Yang M,Wang H W,Wen R Z,Ren Y F. 2023. Study on the rupture directivity of the 2021 Yangbi earthquake sequence. Acta Seismologica Sinica,45(5):836−848. DOI: 10.11939/jass.20220227 |
This study used the strong-motion recordings of the MS6.4 Yangbi earthquake sequence in Yunnan Province to establish the prediction equations of ground motion parameters, and then estimated the focus rupture directivities characteristics for nine Yangbi earthquakes with abundant recordings in a good spatial station coverage based on the rupture directivity effect fitting method. The results indicated that the rupture directivity effects are observed in four of these earthquakes (i.e., the 1st, 4th, 8th, and 9th earthquakes). The four earthquakes are all characterized by the bilateral ruptures with various predominant rupture directions (i.e., southeast for the 4th and 8th events, northwest for the 1st event, and southwest for the 9th event), which illustrates the rupture complexities of the Yangbi earthquake sequence. Since the estimated rupture velocity (about 2.2 km) of the mainshock (the 4th event) is very slow, its rupture directivity effects are not strong and mainly affect the peak ground velocity. However, the rupture directivity effects for the other three earthquakes are very strong and the rupture velocities are faster than that of the mainshock. The dependency of the rupture directivity effects on the period was also observed in the four earthquakes.
段梦乔,赵翠萍,周连庆,赵策,左可桢. 2021. 2021年5月21日云南漾濞MS6.4地震序列发震构造[J]. 地球物理学报,64(9):3111–3125.
|
Duan M Q,Zhao C P,Zhou L Q,Zhao C,Zuo K Z. 2021. Seismogenic structure of the 21 May 2021 MS6.4 Yunnan Yangbi earthquake sequence[J]. Chinese Journal of Geophysics,64(9):3111–3125 (in Chinese).
|
胡进军,谢礼立. 2011. 汶川地震近场加速度基本参数的方向性特征[J]. 地球物理学报,54(10):2581–2589.
|
Hu J J,Xie L L. 2011. Directivity in the basic parameters of the near-field acceleration ground motions during the Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(10):2581–2589 (in Chinese).
|
雷兴林,王志伟,马胜利,何昌荣. 2021. 关于2021年5月滇西漾濞MS6.4地震序列特征及成因的初步研究[J]. 地震学报,43(3):261–286.
|
Lei X L,Wang Z W,Ma S L,He C R. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China[J]. Acta Seismologica Sinica,43(3):261–286 (in Chinese).
|
李大虎,丁志峰,吴萍萍,刘韶,邓菲,张旭,赵航. 2021. 2021年5月21日云南漾濞MS6.4地震震区地壳结构特征与孕震背景[J]. 地球物理学报,64(9):3083–3100.
|
Li D H,Ding Z F,Wu P P,Liu S,Deng F,Zhang X,Zhao H. 2021. The characteristics of crustal structure and seismogenic background of Yangbi MS6.4 earthquake on May 21,2021 in Yunnan Province,China[J]. Chinese Journal of Geophysics,64(9):3083–3100 (in Chinese).
|
龙锋,祁玉萍,易桂喜,吴微微,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646.
|
Long F,Qi Y P,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).
|
卢永坤,张建国,张方浩,杜浩国,杨黎薇. 2021. 2021年云南漾濞MS6.4地震烈度与震害特征[J]. 地震研究,44(3):429–438.
|
Lu Y K,Zhang J G,Zhang F H,Du H G,Yang L W. 2021. The characteristics of the seismic intensity and damage of the 2021 Yangbi,Yunnan MS6.4 earthquake[J]. Journal of Seismological Research,44(3):429–438 (in Chinese).
|
苏金波,刘敏,张云鹏,王伟涛,李红谊,杨军,李孝宾,张淼. 2021. 基于深度学习构建2021年5月21日云南漾濞MS6.4地震序列高分辨率地震目录[J]. 地球物理学报,64(8):2647–2656.
|
Su J B,Liu M,Zhang Y P,Wang W T,Li H Y,Yang J,Li X B,Zhang M. 2021. High resolution earthquake catalog building for the 21 May 2021 Yangbi,Yunnan,MS6.4 earthquake sequence using deep-learning phase picker[J]. Chinese Journal of Geophysics,64(8):2647–2656 (in Chinese).
|
杨九元,温扬茂,许才军. 2021. 2021年5月21日云南漾濞MS6.4地震:一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报,64(9):3101–3110.
|
Yang J Y,Wen Y M,Xu C J. 2021. The 21 May 2021 MS6.4 Yangbi (Yunnan) earthquake:A shallow strike-slip event rupturing in a blind fault[J]. Chinese Journal of Geophysics,64(9):3101–3110 (in Chinese).
|
岳汉,张勇,盖增喜,王腾,赵里. 2020. 大地震震源破裂模型:从快速响应到联合反演的技术进展及展望[J]. 中国科学:地球科学,50(4):515–537.
|
Yue H,Zhang Y,Ge Z X,Wang T,Zhao L. 2020. Resolving rupture processes of great earthquakes:Reviews and perspective from fast response to joint inversion[J]. Science China Earth Sciences,63(4):492–511. doi: 10.1007/s11430-019-9549-1
|
Abrahamson N A,Youngs R R. 1992. A stable algorithm for regression analyses using the random effects model[J]. Bull Seismol Soc Am,82(1):505–510. doi: 10.1785/BSSA0820010505
|
Abrahamson N A,Silva W J. 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes[J]. Seismol Res Lett,68(1):94–127. doi: 10.1785/gssrl.68.1.94
|
Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence[M]//Earthquakes in Kern County, California During 1952. California: State of California Natural Resources, Division of Mines: 199−202.
|
Ben-Menahem A. 1961. Radiation of seismic surface-waves from finite moving sources[J]. Bull Seismol Soc Am,51(3):401–435. doi: 10.1785/BSSA0510030401
|
Bernard P,Herrero A,Berge C. 1996. Modeling directivity of heterogeneous earthquake ruptures[J]. Bull Seismol Soc Am,86(4):1149–1160. doi: 10.1785/BSSA0860041149
|
Boatwright J. 2007. The persistence of directivity in small earthquakes[J]. Bull Seismol Soc Am,97(6):1850–1861. doi: 10.1785/0120050228
|
Calderoni G,Rovelli A,Ben-Zion Y,Di Giovambattista R. 2015. Along-strike rupture directivity of earthquakes of the 2009 L’Aquila,Central Italy,seismic sequence[J]. Geophys J Int,203(1):399–415. doi: 10.1093/gji/ggv275
|
Chen J L,Hao J L,Wang Z,Xu T. 2022. The 21 May 2021 MW6.1 Yangbi earthquake:A unilateral rupture event with conjugately distributed aftershocks[J]. Seismol Res Lett,93(3):1382–1399. doi: 10.1785/0220210241
|
Colavitti L,Lanzano G,Sgobba S,Pacor F,Gallovič F. 2022. Empirical evidence of frequency-dependent directivity effects from small-to-moderate normal fault earthquakes in central Italy[J]. J Geophys Res:Solid Earth,127(6):e2021JB023498.
|
Convertito V,Caccavale M,De Matteis R,Emolo A,Wald D,Zollo A. 2012. Fault extent estimation for near-real-time ground-shaking map computation purposes[J]. Bull Seismol Soc Am,102(2):661–679. doi: 10.1785/0120100306
|
Courboulex F,Dujardin A,Vallee M,Delouis B,Sira C,Deschamps A,Honore L,Thouvenot F. 2013. High-frequency directivity effect for an MW4.1 earthquake,widely felt by the population in southeastern France[J]. Bull Seismol Soc Am,103(6):3347–3353. doi: 10.1785/0120130073
|
Cultrera G,Pacor F,Franceschina G,Emolo A,Cocco M. 2009. Directivity effects for moderate-magnitude earthquakes (MW5.6−6.0) during the 1997 Umbria-Marche sequence,central Italy[J]. Tectonophysics,476(1/2):110–120.
|
Folesky J,Kummerow J,Shapiro S A,Häring M,Asanuma H. 2016. Rupture directivity of fluid-induced microseismic events:Observations from an enhanced geothermal system[J]. J Geophys Res:Solid Earth,121(11):8034–8047. doi: 10.1002/2016JB013078
|
Gallovič F. 2016. Modeling velocity recordings of the MW6.0 South Napa,California,earthquake:Unilateral event with weak high-frequency directivity[J]. Seismol Res Lett,87(1):2–14. doi: 10.1785/0220150042
|
Gong W Z,Ye L L,Qiu Y X,Lay T,Kanamori H. 2022. Rupture directivity of the 2021 MW6.0 Yangbi,Yunnan earthquake[J]. J Geophys Res:Solid Earth,127(9):e2022JB024321. doi: 10.1029/2022JB024321
|
Joyner W B. 1991. Directivity for nonuniform ruptures[J]. Bull Seismol Soc Am,81(4):1391–1395.
|
Kane D L,Shearer P M,Goertz-Allmann B P,Vernon F L. 2013. Rupture directivity of small earthquakes at Parkfield[J]. J Geophys Res:Solid Earth,118(1):212–221. doi: 10.1029/2012JB009675
|
Lengliné O,Got J L. 2011. Rupture directivity of microearthquake sequences near Parkfield,California[J]. Geophys Res Lett,38(8):L08310.
|
Lin Y Y,Lapusta N. 2018. Microseismicity simulated on asperity–like fault patches:On scaling of seismic moment with duration and seismological estimates of stress drops[J]. Geophys Res Lett,45(16):8145–8155. doi: 10.1029/2018GL078650
|
McGuire J J. 2004. Estimating finite source properties of small earthquake ruptures[J]. Bull Seismol Soc Am,94(2):377–393. doi: 10.1785/0120030091
|
McGuire J L,Zhao L,Jordan T H. 2002. Predominance of unilateral rupture for a global catalog of large earthquakes[J]. Bull Seismol Soc Am,92(8):3309–3317. doi: 10.1785/0120010293
|
Pacor F,Gallovič F,Puglia R,Luzi L,D’Amico M. 2016. Diminishing high-frequency directivity due to a source effect:Empirical evidence from small earthquakes in the Abruzzo region,Italy[J]. Geophys Res Lett,43(10):5000–5008. doi: 10.1002/2016GL068546
|
Phung V, Atkinson G M, Lau D T. 2004. Characterization of directivity effects observed during 1999 Chi-Chi, Taiwan earthquake[C]//13th World Conference of Earthquake Engineering. Vancouver, BC, Canada: 2740.
|
Qiang S Y,Wang H W,Wen R Z,Ren Y F,Cui J W. 2023. Characteristics of strong ground motions from four MS≥5.0 earthquakes in the 2021 Yangbi,southwest China,seismic sequence[J]. J Earthq Eng,27(14):3957–3974. doi: 10.1080/13632469.2022.2143941.
|
Ren Y F,Wang H W,Wen R Z. 2017. Imprint of rupture directivity from ground motions of the 24 August 2016 MW6.2 Central Italy earthquake[J]. Tectonics,36(12):3178–3191. doi: 10.1002/2017TC004673
|
Ross Z E,Trugman D T,Azizzadenesheli K,Anandkumar A. 2020. Directivity modes of earthquake populations with unsupervised learning[J]. J Geophys Res:Solid Earth,125(2):e2019JB018299. doi: 10.1029/2019JB018299
|
Ruiz J A,Baumont D,Bernard P,Berge-Thierry C. 2011. Modelling directivity of strong ground motion with a fractal,k−2,kinematic source model[J]. Geophys J Int,186(1):226–244. doi: 10.1111/j.1365-246X.2011.05000.x
|
Spudich P,Chiou B S J. 2008. Directivity in NGA earthquake ground motions:Analysis using isochrone theory[J]. Earthq Spectra,24(1):279–298. doi: 10.1193/1.2928225
|
Velasco A A,Ammon C J,Lay T. 1994. Empirical green function deconvolution of broadband surface waves:Rupture directivity of the 1992 Landers,California (MW7.3),earthquake[J]. Bull Seismol Soc Am,84(3):735–750.
|
Wald D J,Heaton T H,Hudnut K W. 1996. The slip history of the 1994 Northridge,California earthquake determined from strong motion,teleseismic,GPS,and leveling data[J]. Bull Seismol Soc Am,86(1B):S49–S70. doi: 10.1785/BSSA08601B0S49
|
Wang H W,Ren Y F,Wen R Z,Xu P B. 2019. Breakdown of earthquake self-similar scaling and source rupture directivity in the 2016−2017 central Italy seismic sequence[J]. J Geophys Res:Solid Earth,124(4):3898–3917. doi: 10.1029/2018JB016543
|
Wang H W,Wen R Z. 2021. Attenuation and basin amplification revealed by the dense ground motions of the 12 July 2020 MS 5.1 Tangshan,China,earthquake[J]. Seismol Res Lett,92(4):2109–2121. doi: 10.1785/0220200400
|
Wen R Z,Wang H W,Ren Y F. 2015. Rupture directivity from strong-motion recordings of the 2013 Lushan aftershocks[J]. Bull Seismol Soc Am,105(6):3068–3082. doi: 10.1785/0120150100
|
Yang T,Li B R,Fang L H,Su Y J,Zhong Y S,Yang J Q,Qin M,Xu Y J. 2022. Relocation of the foreshocks and aftershocks of the 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China[J]. J Earth Sci,33(4):892–900. doi: 10.1007/s12583-021-1527-7
|
Yenier E,Atkinson G M. 2015. Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations:Application to central and eastern North America[J]. Bull Seismol Soc Am,105(4):1989–2009. doi: 10.1785/0120140332
|
Yoshida K. 2019. Prevalence of asymmetrical rupture in small earthquakes and its effect on the estimation of stress drop:A systematic investigation in inland Japan[J]. Geosci Lett,6(1):16–23. doi: 10.1186/s40562-019-0145-z
|
Yoshida K,Saito T,Emoto K,Urata Y,Sato D. 2019. Rupture directivity,stress drop,and hypocenter migration of small earthquakes in the Yamagata-Fukushima border swarm triggered by upward pore-pressure migration after the 2011 Tohoku-Oki earthquake[J]. Tectonophysics,769(2019):228184.
|
Zhou Y J,Ren C M,Ghosh A,Meng H R,Fang L H,Yue H,Zhou S Y,Su Y J. 2022. Seismological characterization of the 2021 Yangbi foreshock-mainshock sequence,Yunnan,China:More than a triggered cascade[J]. J Geophys Res:Solid Earth,127(8):e2022JB024534. doi: 10.1029/2022JB024534
|