Zuo ZHAOBONG, GUO LUCAN hr. 1985: STUDY OF THE SYNTHETIC CALIBRATION FUNCTION OF BODY WAVE MAGNITUDE. Acta Seismologica Sinica, 7(2): 158-170.
Citation: Zuo ZHAOBONG, GUO LUCAN hr. 1985: STUDY OF THE SYNTHETIC CALIBRATION FUNCTION OF BODY WAVE MAGNITUDE. Acta Seismologica Sinica, 7(2): 158-170.

STUDY OF THE SYNTHETIC CALIBRATION FUNCTION OF BODY WAVE MAGNITUDE

More Information
  • Published Date: August 31, 2011
  • The synthetic calibration functions of body-wave magnitude for Chinese stations are formulated in terms of P and 8 wave travel times from earthquakes in the Chinese region and its corresponding velocity distribution model in the crust and mantle and absorption band Q model for the earth (abbreviated ABM-Q model), discussing the effects of geometrical spreading of seismic waves and absorption by the medium in the earth. The results obtained demonstrate:(1)A factor T1-a in the synthetic calibration function is introduced through the frequency-dependence of quality factor Q. That isf(△, h, T) = g(△, h) + a(△, h)/T1-aWhere the parameter a characterizes the degree of frequency-dependence of the quality factor Q in the ABM-Q model, but here it represents the period-dependence of the calibration functions. This is a theoretical improvement on the calibration functions of Gutenberg and Riehter (1956) and of Nortmann and Duda (1982).(2)The term a (A, h) characterizing effect of absorption has higher compensation obviously in the upper mantle and the bottom mantle in the new calibration functions, in comparison with Nortmann and Dudas (1982). This is consistent, so far as known with the tendency of Q distribution with depth.(3)The tendency of underestimating magnitude by Gutenberg and Riehter (1956) calibration functions in the short period range and by Nortmann and Duda (1982) calibration function in the long period range is improved in the preliminary practical tests, so that the magnitudes determinated from different seismic wave periods are basically consistent.(4)The new calibration functions can be used as basic data in formulating the calibration function of body-wave spectral magnitude.
  • [1] Abe, K., Magnitudes of Iarge shallow earthquakes from 1904——1980, Phys. Earth Planet. Inter,271, 72——92, 1981.

    [2] Abe, K. and S. Noguchi, Determination of magnitude for large shallow earthquakes 1898——1917,Phys. Earth Planet. Inter., 32, 1, 45——59, 1983.

    [3] Kanamori, H., Magnitude scale and quantification of earthquakes, Tectonophysics, 93, 185——199,1983.

    [4] Purcaru, G. and H. Berckhemer, Quantitative relations of seismic source parameters and a classification of earthquakes, Tectonophysics, 84, 1, 57——128, 1982.

    [5] Purcaru, G., S. J. Dada, and H. Berckhemer, Earthquake classification using spectral magnitudes,引自1983年德国汉堡IUGG第18届会议(待发表).

    [6] Dada, ,. J.,震级与地震定量化,地震地磁观测与研究,阎志德、左兆荣译,4, 9, 69 92,1983

    [7] Gutenberg, B. and C. F. Richter, Magnitude and energy of earthquakes, Ann. di Geofss. (Rome),9, 1——15, 1956.

    [8] Miyamura, S., Considerations for the body——wave magnitude determination in the recent EarthquakeData Report of the United States Geological Survey, Tectonophysics, 93, 313——318, 1983.

    [9] Duda, S. J., TtaveI time and body wave magnitude, Pure Appl. Geophys. 87, 13——37, 1971.

    [10] 左兆荣、郭履灿、许忠淮,地震波的几何扩故效应,地震地磁观测与研究,4, 52——63,1983.

    [11] Solovieva, O. N., Determination of magnitude of deep——focus earthquakes, Izvestiya AN SSSR, Ser.Fixika Zemli, 1, Moscow, 25——35, 1978.

    [12] Christoskov, L., et al., Homogeneous magnitude system of the Eurasian continent, Tectonophysics,49, 131——138, 1978.

    [13] Veith, K. F. and G. E. Clawson, Magnitude from short——period P——wave data, BSSA, 62, 435————452.1972.

    [14] Nortmann, R. and S. J. Duda, The amplitude spectra of P——and S——wave and the body——wave magnitude of earthquakes, Tectonophysics, 84, 17——32, 1982.

    [15] Nortmann, R. and S. J. Duda, Determination of spectral properties of earthquakes from their magnitudes, Tectonophysics, 93, 251——275, 1983.

    [16] Anderson, D. L., and R. S. Hart, Q of the Earth, J. Geophys. Res., 83 5869——5882, 1978.

    [17] 郭友梅,阎志德等,中国地区地震P波和s波走时丧,地震学报,3, 197——209, 1951.

    [18] 阎志德,郭履灿,唐友梅,中国地区地震P波和S波走时表灼实用检验,西北地震学报,3, 13——17,1981,

    [19] Minster, J. B. and D. L. Anderson, A model of dislocation——controlled rheology for the mantle,Phil. Tra,as. R. Soc. Lond. A, 299, 319——356, 1981.

    [20] Gordon, R. B. and C. D,. Nelson, Anelastic properties of the earth, Rev. Geophys.,457——474.1966.

    [21] Anderson, D. L., and R. S. Hart, Attenuation models of the earth, PF,ys. Earth Plaaet. Inter., 16,289——306, 1978.

    [22] Dziewonski, A. VI. and D. L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter., 25, 297——356, 1981.

    [23] Der, Z. A., et al., An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the United States in the O.S——4Hz band, Geophys. J. R. astr. Soc.,69, 1, 67——100, 1982.

    [24] CIements, J. R., Intrinsic Q and its frequency dependence, Pfzys. Earth Planet. Inter., 27, 3, 286——299, 1982.

    [25] Anderson, D. L. and J. W., Given, Absorption band Q model for the earth, J. Geophys. Res.,87, 3893——3904, 1982.

    [26] Bullen, K. E., An Introduction to the Theory of Seismology, Cambridge University Press, London,1963.

    [1] Abe, K., Magnitudes of Iarge shallow earthquakes from 1904——1980, Phys. Earth Planet. Inter,271, 72——92, 1981.

    [2] Abe, K. and S. Noguchi, Determination of magnitude for large shallow earthquakes 1898——1917,Phys. Earth Planet. Inter., 32, 1, 45——59, 1983.

    [3] Kanamori, H., Magnitude scale and quantification of earthquakes, Tectonophysics, 93, 185——199,1983.

    [4] Purcaru, G. and H. Berckhemer, Quantitative relations of seismic source parameters and a classification of earthquakes, Tectonophysics, 84, 1, 57——128, 1982.

    [5] Purcaru, G., S. J. Dada, and H. Berckhemer, Earthquake classification using spectral magnitudes,引自1983年德国汉堡IUGG第18届会议(待发表).

    [6] Dada, ,. J.,震级与地震定量化,地震地磁观测与研究,阎志德、左兆荣译,4, 9, 69 92,1983

    [7] Gutenberg, B. and C. F. Richter, Magnitude and energy of earthquakes, Ann. di Geofss. (Rome),9, 1——15, 1956.

    [8] Miyamura, S., Considerations for the body——wave magnitude determination in the recent EarthquakeData Report of the United States Geological Survey, Tectonophysics, 93, 313——318, 1983.

    [9] Duda, S. J., TtaveI time and body wave magnitude, Pure Appl. Geophys. 87, 13——37, 1971.

    [10] 左兆荣、郭履灿、许忠淮,地震波的几何扩故效应,地震地磁观测与研究,4, 52——63,1983.

    [11] Solovieva, O. N., Determination of magnitude of deep——focus earthquakes, Izvestiya AN SSSR, Ser.Fixika Zemli, 1, Moscow, 25——35, 1978.

    [12] Christoskov, L., et al., Homogeneous magnitude system of the Eurasian continent, Tectonophysics,49, 131——138, 1978.

    [13] Veith, K. F. and G. E. Clawson, Magnitude from short——period P——wave data, BSSA, 62, 435————452.1972.

    [14] Nortmann, R. and S. J. Duda, The amplitude spectra of P——and S——wave and the body——wave magnitude of earthquakes, Tectonophysics, 84, 17——32, 1982.

    [15] Nortmann, R. and S. J. Duda, Determination of spectral properties of earthquakes from their magnitudes, Tectonophysics, 93, 251——275, 1983.

    [16] Anderson, D. L., and R. S. Hart, Q of the Earth, J. Geophys. Res., 83 5869——5882, 1978.

    [17] 郭友梅,阎志德等,中国地区地震P波和s波走时丧,地震学报,3, 197——209, 1951.

    [18] 阎志德,郭履灿,唐友梅,中国地区地震P波和S波走时表灼实用检验,西北地震学报,3, 13——17,1981,

    [19] Minster, J. B. and D. L. Anderson, A model of dislocation——controlled rheology for the mantle,Phil. Tra,as. R. Soc. Lond. A, 299, 319——356, 1981.

    [20] Gordon, R. B. and C. D,. Nelson, Anelastic properties of the earth, Rev. Geophys.,457——474.1966.

    [21] Anderson, D. L., and R. S. Hart, Attenuation models of the earth, PF,ys. Earth Plaaet. Inter., 16,289——306, 1978.

    [22] Dziewonski, A. VI. and D. L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Inter., 25, 297——356, 1981.

    [23] Der, Z. A., et al., An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the United States in the O.S——4Hz band, Geophys. J. R. astr. Soc.,69, 1, 67——100, 1982.

    [24] CIements, J. R., Intrinsic Q and its frequency dependence, Pfzys. Earth Planet. Inter., 27, 3, 286——299, 1982.

    [25] Anderson, D. L. and J. W., Given, Absorption band Q model for the earth, J. Geophys. Res.,87, 3893——3904, 1982.

    [26] Bullen, K. E., An Introduction to the Theory of Seismology, Cambridge University Press, London,1963.
  • Related Articles

  • Cited by

    Periodical cited type(18)

    1. 张秀玲,赵旭东. 基于第十三代国际地磁参考场模型在中国区域特征分析与研究. 地震学报. 2024(01): 120-128 . 本站查看
    2. 孔敏,田先德,余佳,王风帆,舒雨婷. 基于IGRF-13的海洋磁力异常重计算与精度分析. 海洋通报. 2023(01): 10-18 .
    3. 罗凡,吕庆田,严加永,张昆,付光明,钟任富. 卫星重磁数据球坐标系下正反演方法研究进展. 地球物理学进展. 2021(04): 1420-1431 .
    4. 戴中东,孟良,项伟,梁自忠. 机场磁偏角测量和地磁场模型计算的比较研究. 测绘通报. 2021(S1): 261-264+269 .
    5. 王光辉,江思荣,翟光,罗宛臻. 纯磁控微小卫星姿态控制方法研究. 计算机仿真. 2018(02): 33-38 .
    6. 张学钢,朱振才,陈宏宇,刘善伍. 利用气动力矩卸载动量轮的策略. 控制与决策. 2018(09): 1708-1712 .
    7. 孔敏,田先德,王风帆,李维禄,张瑞端,宋晓. 国际地磁参考场模型及其应用——以南海及其周边区域为例. 海洋开发与管理. 2018(06): 82-86 .
    8. 邓国庆,姚爱国,龚正,邱敏. 基于地面磁信标的水平定向钻进实时定位方法. 地球科学. 2017(12): 2336-2344 .
    9. 安柏林,康国发. 基于CHAOS-5模型研究中国大陆地区地磁场长期变化. 云南大学学报(自然科学版). 2017(05): 789-797 .
    10. 陈斌,倪喆,徐如刚,顾左文,袁洁浩,王雷. 2010.0年中国及邻近地区地磁场. 地球物理学报. 2016(04): 1446-1456 .
    11. 董宜煊,陈金刚. 基于IGRF地磁场模型的航天器地磁干扰力矩数值仿真. 航天器环境工程. 2016(04): 387-391 .
    12. 赵希亮,边刚,金绍华,王美娜,刘强. 世界地磁场模型WMM2015误差分析与评估. 海洋测绘. 2016(03): 10-15 .
    13. 石在虹,滕少臣,刘子恒. 国际地磁参考场解算方法及石油工程应用. 石油钻采工艺. 2016(04): 409-414 .
    14. 吕志峰,孙渊,张金生,王仕成,李婷. 地磁匹配导航半实物仿真方案设计及关键技术分析. 电光与控制. 2015(02): 59-64 .
    15. 易昌华,韩华,方守川,曹国发,张瑞天. 海上地震勘探罗经鸟数据对拖缆空间位置的影响. 石油地球物理勘探. 2015(05): 809-814+801 .
    16. 柴松均,陈曙东,张爽. 国际地磁参考场的计算与软件实现. 吉林大学学报(信息科学版). 2015(03): 280-285 .
    17. 吕志峰,张金生,王仕成,李婷. 高精度地磁场模拟系统的设计与研究. 宇航学报. 2014(11): 1284-1290 .
    18. 郁丰,华冰,吴云华,康国华. 基于自适应卡尔曼滤波的简化地磁定轨. 中国惯性技术学报. 2014(04): 519-524 .

    Other cited types(18)

Catalog

    Article views (1020) PDF downloads (93) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return