1981: AN ESTIMATION OF CRUSTAL STRESS VALUE FROM ANALYSIS OF SEISMIC WAVES. Acta Seismologica Sinica, 3(3): 251-263.
Citation: 1981: AN ESTIMATION OF CRUSTAL STRESS VALUE FROM ANALYSIS OF SEISMIC WAVES. Acta Seismologica Sinica, 3(3): 251-263.

AN ESTIMATION OF CRUSTAL STRESS VALUE FROM ANALYSIS OF SEISMIC WAVES

More Information
  • Published Date: August 31, 2011
  • In this work the process of earthquake rupture is studied by means of the theory of fracture mechanics. It is believed that the phenomenon of earthquake is essentially caused by the rupture of rock media under low shear gtress conditions. It is the result of continual development of cracks from the stable to the final unstable state. The change of stress and displacement in the process of crack development has been analysed from which one can see that the stress at any point where rupture will occur always undergo a rise from its initial value (0) to the yielding strength (y) before rupture. After rupture, the stress on the crack surface will drop to a low value near zero. The displacements before and after rupture can be calculated by the formulae of theory of elastic ity but at the instance of rupture, the inelastic displacement at the tips of crack is not given by the same formulae, which may be approximately obtained from the slide displacement formula in fracture mechanics. According to the dislocation model, it is because that the dislocation D(, t) from which elastic wave radiation field has been calculated is jusjt the inelastic displacement, at the instant of rupture. Therefore, to estimate stress drop and calculate earthquake dislocation by elastic displacement formulae will be erroneous. If the earthquake dislocation is estimated by the slide displacement formula in fracture mechanics, more adequate formulae for calculating the total energy ET(ET=yDS, y= yield strength, D= average dislocation, S = area of the fault surface) released by an earthquake andthe initial stress 0(0=[Dmax/L4y/(1-) ]1/2L=length of fault ) can be deduced.Using these formulae, the total energy ET released by some earthquakes and the initial stress To are estimated and listed in the table 1 and 2. They are more reasonable than before. They demonstrate that (1) most earthquakes take place under low initial stress, about 100-200 bars, (2) the total energy released by an earthquake is about one order of magnitude higher than the seismic wave energy.
  • [1] K. Aki, Seismic displacements near a fault, J. Geophy. Res., 73, 16, 5359——5376, 1968.

    [2] L. Knopoff, Energy release in earthquakes, Geopbys. J. Roy. Astro. Soe., 1, 1, 44——51, 1958.

    [3] A. T. Stan. Slip in a crystal and ?capture in a solid due to shear, Proc. Carnb. Phil. Soc., 24, 430——500, 1928.

    [4] P. 0. Paris and G. l:. Sih, Stress analysis of cracks, ASTM——STP, 381, 1964.

    [5] M. A. Chinnery, Theuretical fault models, Publ, Dominion. Obs., 37, 7, 211——223, 1969.

    [6] V. I. Keilis——Borok, On estimation of the displacement in an earthquake source and of source dimensions. Ana. Geafis., 12, 2, 205——214, 1959.

    [7] 顾浩鼎, 陈运泰等, 1975年2月4日辽宁省海城地震的震源机制, 地球物理学报, 19, 4, 1976.

    [8] K. Aki, earthquake mechanizm, Tectonophysics, 13, 1——4, 423——446, 1972.

    [9] N. A. Haskell, Total energy and energy spectral density of elastic wave radiation from propagation faults, Bull. Sei.srn. Soc. Amer., 54, 6, 1811——1841, 1964.

    [10] J. F. Knott, Fundamentals of fracture mechanics, London Butterworths, 1973.

    [11] G. C. Sih, Mechanics of fracture, 1, 1973.

    [12] 陈培善等, 唐山地震前后京津唐张地区的应力场, 地球物理学报, 21, 1, 1978

    [13] L. R. F. Rose. Recent theoretical and experimental result on fast brittle fracture, Int. J. Fract, 12, 6, 1976.

    [1] K. Aki, Seismic displacements near a fault, J. Geophy. Res., 73, 16, 5359——5376, 1968.

    [2] L. Knopoff, Energy release in earthquakes, Geopbys. J. Roy. Astro. Soe., 1, 1, 44——51, 1958.

    [3] A. T. Stan. Slip in a crystal and ?capture in a solid due to shear, Proc. Carnb. Phil. Soc., 24, 430——500, 1928.

    [4] P. 0. Paris and G. l:. Sih, Stress analysis of cracks, ASTM——STP, 381, 1964.

    [5] M. A. Chinnery, Theuretical fault models, Publ, Dominion. Obs., 37, 7, 211——223, 1969.

    [6] V. I. Keilis——Borok, On estimation of the displacement in an earthquake source and of source dimensions. Ana. Geafis., 12, 2, 205——214, 1959.

    [7] 顾浩鼎, 陈运泰等, 1975年2月4日辽宁省海城地震的震源机制, 地球物理学报, 19, 4, 1976.

    [8] K. Aki, earthquake mechanizm, Tectonophysics, 13, 1——4, 423——446, 1972.

    [9] N. A. Haskell, Total energy and energy spectral density of elastic wave radiation from propagation faults, Bull. Sei.srn. Soc. Amer., 54, 6, 1811——1841, 1964.

    [10] J. F. Knott, Fundamentals of fracture mechanics, London Butterworths, 1973.

    [11] G. C. Sih, Mechanics of fracture, 1, 1973.

    [12] 陈培善等, 唐山地震前后京津唐张地区的应力场, 地球物理学报, 21, 1, 1978

    [13] L. R. F. Rose. Recent theoretical and experimental result on fast brittle fracture, Int. J. Fract, 12, 6, 1976.
  • Related Articles

  • Cited by

    Periodical cited type(10)

    1. 鲁明贵,谷洪彪,巩浩波,张文旭,迟宝明. 基于Molchan图表法的流体监测井水位地震预测效能检验. 地震研究. 2024(02): 200-211 .
    2. 黄仁桂,袁俊,赵爱平,罗丽,赵影,李雨泽,肖孟仁,肖健,吕坚,王良俊,罗桂生,朱国伟,胡婷霞. 地下水位对定点形变观测影响分析——以九江中心站异常核实为例. 地震地磁观测与研究. 2024(01): 108-117 .
    3. 鲁明贵,谷洪彪,杨耀,芮雪莲,许多湛,马艺宁,张文旭,迟宝明. 雅安地区监测井水位预测效能对比研究. 地震. 2024(03): 215-231 .
    4. 缪阿丽,祝涛,张艺,叶碧文,王凯. 2021年青海玛多7.4级地震的江苏流体井水位同震响应特征. 地震研究. 2023(01): 68-73 .
    5. 裴红云,李军辉,王俊,李罡风,陈俊,谢庆,刘莉. 2021年9月安徽巢湖井水温异常分析. 四川地震. 2023(02): 27-32 .
    6. 李营,方震,张晨蕾,李继业,鲍志诚,张翔,刘兆飞,周晓成,陈志,杜建国. 地震流体地球化学短临预测研究进展与展望. 地震地质. 2023(03): 593-621 .
    7. 钟骏,王博,晏锐,李庆. 洱源温泉水氡预测效能检验及其水化学特征. 地震研究. 2021(04): 564-571 .
    8. 贾漯昭,宋美琴,谢健健,邢康,高家乙. 华北块体地震活动显著增强预测效能评估. 地震. 2020(02): 38-48 .
    9. 孙小龙,刘耀炜,付虹,晏锐. 我国地震地下流体学科分析预报研究进展回顾. 地震研究. 2020(02): 216-231+417 .
    10. 王喜龙,杨振鹏,刘天龙. 辽宁高七井静水位破年变异常特征分析. 防灾减灾学报. 2019(04): 7-13 .

    Other cited types(2)

Catalog

    Article views (963) PDF downloads (110) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return