JIN YAO, ZHANG TIANZHONG, HUA ZHENGXING, XU MINGFA, HUANG PINGZHANG. 1983: THE ELECTRICAL RESISTIVITY CHANGES AND VOLUMETRIC STRAIN OF WATER-BEARING CRACKED ROCK SAMPLES UNDER UNIAXIAL COMPRESSION. Acta Seismologica Sinica, 5(1): 99-106.
Citation: JIN YAO, ZHANG TIANZHONG, HUA ZHENGXING, XU MINGFA, HUANG PINGZHANG. 1983: THE ELECTRICAL RESISTIVITY CHANGES AND VOLUMETRIC STRAIN OF WATER-BEARING CRACKED ROCK SAMPLES UNDER UNIAXIAL COMPRESSION. Acta Seismologica Sinica, 5(1): 99-106.

THE ELECTRICAL RESISTIVITY CHANGES AND VOLUMETRIC STRAIN OF WATER-BEARING CRACKED ROCK SAMPLES UNDER UNIAXIAL COMPRESSION

More Information
  • Published Date: August 31, 2011
  • The axial and transversal electrical resistivity changes in water-bearing, and high temperature baked gabbro rock samples together with their volumetric strain have been measured simultaneously and continuously under uniaxial compression. The measurement shows that the value of resistivity decreases at first before complete water saturation in the stage of non-elastic compression, then it begins to increase in the stage of complete water saturation and elastic compression. Finally the resistivity increases again during the last non-elastic dilatancy stage. According to Archies law, an approximate relationship between the resistivity change and volumetric strain has been obtained through mathematical analysis. Qualitatively, our experimental results are in agreement with it, but not quantitatively. The main result obtained is that the electrical resistivity of water-saturated rock samples increases during the dilatancy stage under uniaxial compression. It may be explained by decrease of water saturation as caused by reopening of the heated cracks.
  • [1] 钱复业、赵玉林,地震前地电阻变化十例,地震学报,2, 2, 1980,

    [2] A. Mazzella and' Morrison, Electrical resistivity variations associated with earthquakes on the San Andreas fault, Science, 185, 855——857, 1974.

    [3] V. I. Mjachkin, et al., Two models for earthquake forerunners, Petrc 9ppl. Geoplay., 113, 169——181,1975.

    [4] M. D. Zoback and J. D. Byerlee. The effect of micro——crack dilatancy on the permeability of wes——terly granite, J. Geophys. Res., 80,, 752——755, 1975.

    [5] E. I. Parkhomenko and A. J. Bondarenko, Effect of uniaxial pressure on electrical resistivity of rocks, Bull.A cad. S., USSR, Geophysics, Ser, 2, 326, 1960.

    [6] N. Fujii ands Y. Iiamano, Anisotropic changes in resistivity and velocity dluring rock deformation, High——pressure research applications in geophysics, Edited by Murlih. Manghnani and Syun——

    [7] iti Akimote, Academic press, New York, 53——63, 1977.

    [8] W. F. Brance, A. S. Orange, and T. M.’Madden, The effect of pressure on the electrical resistivity of water——saturated crystalline rocks, J. Geophys. Res., 70(22), 5669——5678, 1965.

    [9] W. F. Brace and A. S. orange, Further studies of the effects of pressure on electrical resistivity of rocks, J. Geophys. Res., 73(16). 5407——5420, 1968.

    [10] W. F. Brance, Dilatancy——related electrical resistivity changes in rocks, Pure Appl. Geophys., 113, 207——217, 1975

    [1] 钱复业、赵玉林,地震前地电阻变化十例,地震学报,2, 2, 1980,

    [2] A. Mazzella and' Morrison, Electrical resistivity variations associated with earthquakes on the San Andreas fault, Science, 185, 855——857, 1974.

    [3] V. I. Mjachkin, et al., Two models for earthquake forerunners, Petrc 9ppl. Geoplay., 113, 169——181,1975.

    [4] M. D. Zoback and J. D. Byerlee. The effect of micro——crack dilatancy on the permeability of wes——terly granite, J. Geophys. Res., 80,, 752——755, 1975.

    [5] E. I. Parkhomenko and A. J. Bondarenko, Effect of uniaxial pressure on electrical resistivity of rocks, Bull.A cad. S., USSR, Geophysics, Ser, 2, 326, 1960.

    [6] N. Fujii ands Y. Iiamano, Anisotropic changes in resistivity and velocity dluring rock deformation, High——pressure research applications in geophysics, Edited by Murlih. Manghnani and Syun——

    [7] iti Akimote, Academic press, New York, 53——63, 1977.

    [8] W. F. Brance, A. S. Orange, and T. M.’Madden, The effect of pressure on the electrical resistivity of water——saturated crystalline rocks, J. Geophys. Res., 70(22), 5669——5678, 1965.

    [9] W. F. Brace and A. S. orange, Further studies of the effects of pressure on electrical resistivity of rocks, J. Geophys. Res., 73(16). 5407——5420, 1968.

    [10] W. F. Brance, Dilatancy——related electrical resistivity changes in rocks, Pure Appl. Geophys., 113, 207——217, 1975
  • Related Articles

  • Cited by

    Periodical cited type(10)

    1. 史哲,廖武林,姚运生,童广勤. 基于震相自动检测方法的秭归地区三维速度成像. 大地测量与地球动力学. 2024(12): 1280-1286+1311 .
    2. 胡锦涛,谢军,危自根,金超. 三峡库区秭归段浅层速度结构和孕震环境. 地震学报. 2023(02): 223-233 . 本站查看
    3. 张双喜,刘金钊,张品,陈兆辉. 联合BEMD和WMM方法实现位场多尺度边界检测. 武汉大学学报(信息科学版). 2022(04): 533-542 .
    4. 冯锐. 趣味地震学(5):诱发地震, 远非那么简单. 国际地震动态. 2019(05): 32-40 .
    5. 李伟,储日升,王烁帆. 2017年6月16日湖北秭归M_S4.3地震成因初探. 地震. 2019(03): 28-42 .
    6. 王杰,王秋良,黄颂,吴海波,赵凌云,陈俊华. 湖北巴东地区滑脱构造与地震活动特征. 大地测量与地球动力学. 2018(03): 225-232 .
    7. 张娜,赵翠萍,周连庆. 三峡水库区上地壳三维精细速度结构成像. 地震. 2018(04): 37-48 .
    8. 罗佳宏,马文涛. 三峡库区上地壳速度结构初步研究. 地震地质. 2016(02): 329-341 .
    9. 吴海波,王杰,杜承宸,申学林,陈俊华. 三峡库区上地壳S波衰减成像研究. 地震学报. 2016(02): 188-198+328 . 本站查看
    10. 李小勇,朱培民,周强,彭松柏,刘江平,刘娇. 三峡库区上地壳横波速度结构. 地球科学(中国地质大学学报). 2014(12): 1842-1850 .

    Other cited types(11)

Catalog

    Article views (1080) PDF downloads (87) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return