Hui Shaoxing, Wu Jianping, Yan Wenhua, Fan Liping. 2019: Rayleigh wave phase velocity tomography in Shaanxi and its adjacent regions. Acta Seismologica Sinica, 41(2): 181-193. DOI: 10.11939/jass.20180081
Citation: Hui Shaoxing, Wu Jianping, Yan Wenhua, Fan Liping. 2019: Rayleigh wave phase velocity tomography in Shaanxi and its adjacent regions. Acta Seismologica Sinica, 41(2): 181-193. DOI: 10.11939/jass.20180081

Rayleigh wave phase velocity tomography in Shaanxi and its adjacent regions

More Information
  • Received Date: June 12, 2018
  • Revised Date: December 20, 2018
  • Available Online: March 17, 2019
  • Published Date: February 28, 2019
  • In this paper, we used the vertical component of continuous wave data in Shaanxi and its adjacent regions recorded by total 257 stations in the broadband stations of the portable seismic array deployed under the project " China Seismic Array: Northern Part of North-South Seismic Belt” and fixed seismic network from 2014 to 2015. The 7 185 phase velocity dispersion curves of Rayleigh waves are obtained by using the phase velocity extraction method based on image analysis, then the phase velocity dispersion are used to reconstruct the phase velocity maps at period of 5-40 s with the minimum resolution about 20 km. The results show that the phase velocity maps better reflect the geological structure characteristics of the crust to uppermost mantle due to the obvious lateral heterogeneity of the phase velocity distribution. The phase velocity distribution of Rayleigh wave in the short period (5−10 s) is closely related to the surface geological structure, the boundary between high-velocity anomaly and low-velocity anomaly is consistent well with the boundary of the block. In the 15 s period, on the phase velocity maps most of the rifted sedimentary basins (the Weihe, Tianshui, etc.) still exhibit low-velocity anomalies, indicating that the basin may have thicker sedimentary layer. The phase velocity distribution in 20−40 s period is greatly affected by the thickness of the earth’s crust, the northeastern Tibetan Plateau has always been characterized by obvious low-velocity anomalies, and the Ordos block exhibits a high-velocity anomalies in the middle to lower crust. However, the low-velocity anomaly of the 20−30 s period extends from the Tibetan Plateau along the Liupanshan thrust fold belt to the interior of Ordos, therefore it is speculated that there is a certain degree of material exchange and fusion in this area.
  • 陈九辉,刘启元,李顺成,郭飙,赖院根. 2005. 青藏高原东北缘—鄂尔多斯地块地壳上地幔S波速度结构[J]. 地球物理学报,48(2):333–342. doi: 10.3321/j.issn:0001-5733.2005.02.015
    Chen J H,Liu Q Y,Li S C,Guo B,Lai Y G. 2005. Crust and upper mantle S-wave velocity structure across northeastern Tibetan Plateau and Ordos block[J]. Chinese Journal of Geophysics,48(2):333–342 (in Chinese).
    范莉苹,吴建平,房立华,王未来. 2015. 青藏高原东南缘瑞利波群速度分布特征及其构造意义探讨[J]. 地球物理学报,58(5):1555–1567.
    Fan L P,Wu J P,Fang L H,Wang W L. 2015. The characteristic of Rayleigh wave group velocities in the southeastern margin of the Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics,58(5):1555–1567 (in Chinese).
    房立华,吴建平,王未来,王长在,杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报,56(7):2268–2279.
    Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).
    宫相宽,陈丹玲,任云飞,刘良,高胜,杨士杰. 2016. 北秦岭含柯石英斜长角闪岩的发现及其地质意义[J]. 科学通报,61(12):1365–1378.
    Gong X K,Chen D L,Ren Y F,Liu L,Gao S,Yang S J. 2016. Identification of coesite-bearing amphibolite in the North Qinling and its geological significance[J]. Chinese Science Bulletin,61(12):1365–1378 (in Chinese).
    郭晓玉,高锐,高建荣,徐啸,黄兴富. 2018. 青藏高原东北缘马衔山断裂带构造属性的综合研究[J]. 地球物理学报,61(2):560–569.
    Guo X Y,Gao R,Gao J R,Xu X,Huang X F. 2018. Integrated analysis on the tectonic features of the Maxianshan fault zone in the northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,61(2):560–569 (in Chinese).
    郭瑛霞,张元生,颜文华,魏从信,秦满忠. 2017a. 甘东南地区基于射线追踪面波频散三维成像[J]. 地震工程学报,39(2):268–277.
    Guo Y X,Zhang Y S,Yan W H,Wei C X,Qin M Z. 2017a. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing in southeastern area of Gansu Province[J]. China Earthquake Engineering Journal,39(2):268–277 (in Chinese).
    郭瑛霞,张元生,刘旭宙,颜文华. 2017b. 应用背景噪声成像研究祁连山地区地壳S波速度结构[J]. 地震研究,40(3):482–490.
    Guo Y X,Zhang Y S,Liu X Z,Yan W H. 2017b. Application of ambient noise tomography to study the S-wave crustal velocity structure in Qilian mountains region[J]. Journal of Seismological Research,40(3):482–490 (in Chinese).
    韩松,韩江涛,刘国兴,王海燕,梁宏达. 2016. 青藏高原东北缘至鄂尔多斯地块壳幔电性结构及构造变形研究[J]. 地球物理学报,59(11):4126–4138. doi: 10.6038/cjg20161116
    Han S,Han J T,Liu G X,Wang H Y,Liang H D. 2016. Crust and upper mantle electrical structure and tectonic deformation of the northeastern margin of the Tibetan Plateau and the adjacent Ordos block[J]. Chinese Journal of Geophysics,59(11):4126–4138 (in Chinese).
    贺伟光,陈永顺,叶庆东,安美建,董树文. 2015. 秦岭及周边地区背景噪声Love波层析成像[J]. 地球物理学进展,30(1):47–56.
    He W G,Chen Y S,Ye Q D,An M J,Dong S W. 2015. Ambient noise Love-wave tomography in Qinling orogeny and surrounding area[J]. Progress in Geophysics,30(1):47–56 (in Chinese).
    惠少兴,金昭娣,宋秀青. 2018. 陕西地区地壳速度模型研究[J]. 震灾防御技术,13(2):363–372.
    Hui S X,Jin Z D,Song X Q. 2018. Crustal velocity model of the Shaanxi region[J]. Technology for Earthquake Disaster Prevention,13(2):363–372 (in Chinese).
    李文辉,高锐,王海燕,李英康,李洪强,侯贺晟,熊小松,郭晓玉,徐啸,邹长桥,梁宏达. 2017. 六盘山断裂带及其邻区地壳结构[J]. 地球物理学报,60(6):2265–2278.
    Li W H,Gao R,Wang H Y,Li Y K,Li H Q,Hou H S,Xiong X S,Guo X Y,Xu X,Zou C Q,Liang H D. 2017. Crustal structure beneath the Liupanshan fault zone and adjacent regions[J]. Chinese Journal of Geophysics,60(6):2265–2278 (in Chinese).
    李英康,高锐,高建伟,米胜信,姚聿涛,李文辉,熊小松. 2015. 秦岭造山带的东西向地壳速度结构特征[J]. 地球物理学进展,30(3):1056–1069.
    Li Y K,Gao R,Gao J W,Mi S X,Yao Y T,Li W H,Xiong X S. 2015. Characteristics of crustal velocity structure along Qinling orogenic belt[J]. Progress in Geophysics,30(3):1056–1069 (in Chinese).
    刘宝峰,李松林,张先康,张成科,赵金仁,任青芳,海燕. 2003. 玛沁—靖边剖面S波资料研究与探讨[J]. 地震学报,25(1):82–88. doi: 10.3321/j.issn:0253-3782.2003.01.010
    Liu B F,Li S L,Zhang X K,Zhang C K,Zhao J R,Ren Q F,Hai Y. 2003. Study of crustal structure with S-wave data from Maqin-Jingbian profile[J]. Acta Seismologica Sinica,25(1):82–88 (in Chinese).
    刘庚,高原,石玉涛. 2017. 秦岭造山带及其两侧区域地壳剪切波分裂[J]. 地球物理学报,60(6):2326–2337.
    Liu G,Gao Y,Shi Y T. 2017. Shear-wave splitting in Qinling orogen and its both sides[J]. Chinese Journal of Geophysics,60(6):2326–2337 (in Chinese).
    任隽,彭建兵,王夫运,刘晨,冯希杰,戴王强. 2012. 渭河盆地及邻区地壳深部结构特征研究[J]. 地球物理学报,55(9):2939–2947.
    Ren J,Peng J B,Wang F Y,Liu C,Feng X J,Dai W Q. 2012. The research of deep structural features of Weihe basin and adjacent areas[J]. Chinese Journal of Geophysics,55(9):2939–2947 (in Chinese).
    王伟涛,杨润海,郑定昌,倪四道,王宝善. 2011. 云南地区背景噪声互相关函数中体波信号来源初探[J]. 地震研究,34(3):350–357. doi: 10.3969/j.issn.1000-0666.2011.03.017
    Wang W T,Yang R H,Zheng D C,Ni S D,Wang B S. 2011. Study on the origin of the body wave extracted from ambient seismic noise cross-correlation function in Yunnan[J]. Journal of Seismological Research,34(3):350–357 (in Chinese).
    王亚伟,刘良,廖小莹,盖永升,杨文强,康磊. 2016. 秦岭杂岩清油河斜长角闪岩多期变质的证据:来自锆石微量元素和包裹体的启示[J]. 岩石学报,32(5):1467–1492.
    Wang Y W,Liu L,Liao X Y,Ge Y S,Yang W Q,Kang L. 2016. Multi-metamorphism of amphibolite in the Qinling complex,Qingyouhe area:Revelation from trace elements and mineral inclusions in zircons[J]. Acta Petrologica Sinica,32(5):1467–1492 (in Chinese).
    喜马拉雅地震科学台阵. 2011. 中国地震科学探测台阵波形数据: 喜马拉雅计划[Z]. 北京: 中国地震局地球物理研究所. doi: 10.12001/ChinArray.Data.Himalaya.
    China Array-Himalaya. 2011. China Seismic Array Waveform Data of Himalaya Project[Z]. Beijing: Institute of Geophysics, China Earthquake Administration. doi: 10.12001/ChinArray.Data.Himalaya.
    莘海亮,刘明军,张元生,康敏. 2017. 太行山断裂带东南缘地壳三维P波速度结构成像[J]. 地震工程学报,39(1):141–149. doi: 10.3969/j.issn.1000-0844.2017.01.0141
    Xin H L,Liu M J,Zhang Y S,Kang M. 2017. Tomography of 3D P-wave velocity structure of crust at southeast margin of Taihang mountains fault zone[J]. China Earthquake Engineering Journal,39(1):141–149 (in Chinese).
    徐树斌,米宁,徐鸣洁,王良书,李华,于大勇. 2013. 利用接收函数研究渭河地堑及其周边地壳结构[J]. 中国科学:地球科学,43(10):1651–1658.
    Xu S B,Mi N,Xu M J,Wang L S,Li H,Yu D Y. 2013. Crustal structures of the Weihe graben and its surroundings from receiver functions[J]. Science China Earth Sciences,43(10):1651–1658 (in Chinese).
    杨志高,张雪梅. 2018. 青藏高原东北缘噪声层析成像研究[J]. 地震学报,40(1):1–12. doi: 10.3969/j.issn.1000-0844.2018.01.001
    Yang Z G,Zhang X M. 2018. Ambient noise Rayleigh wave tomography in the northeastern Tibetan Plateau[J]. Acta Seismologica Sinica,40(1):1–12 (in Chinese).
    姚华建,徐果明,肖翔. 2004. 基于图像分析的双台面波相速度频散曲线快速提取方法[J]. 地震地磁观测与研究,25(1):1–8. doi: 10.3969/j.issn.1003-3246.2004.01.001
    Yao H J,Xu G M,Xiao X. 2004. A quick tracing method based on image analysis technique for the determination of dual stations phase velocities dispersion curve of surface wave[J]. Seismological and Geomagnetic Observation and Research,25(1):1–8 (in Chinese).
    余大新,吴庆举,王鹏,叶庆东,潘佳铁,高孟潭. 2016. 蒙古中南部地区基于天然地震的勒夫波相速度层析成像[J]. 地震学报,38(1):41–52.
    Yu D X,Wu Q J,Wang P,Ye Q D,Pan J T,Gao M T. 2016. Love wave phase velocity tomography in the south-central Mongolia from earthquake[J]. Acta Seismologica Sinica,38(1):41–52 (in Chinese).
    张国伟,孟庆任,赖绍聪. 1995. 秦岭造山带的结构构造[J]. 中国科学:B辑,25(9):994–1003.
    Zhang G W,Meng Q R,Lai S C. 1995. Tectonics and structure of Qinling orogenic belt[J]. Science in China:Series B,25(9):994–1003 (in Chinese).
    郑晨,丁志峰,宋晓东. 2018. 面波频散与接收函数联合反演南北地震带北段壳幔速度结构[J]. 地球物理学报,61(4):1211–1224.
    Zheng C,Ding Z F,Song X D. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern North-South Seismic Zone[J]. Chinese Journal of Geophysics,61(4):1211–1224 (in Chinese).
    周民都. 2006. 青藏高原东北缘深地震测深研究成果回顾[J]. 西北地震学报,28(2):189–191.
    Zhou M D. 2006. Review of study on the depth seismic sounding in the northeastern margin of Qinghai-Tibetan Plateau[J]. Northwestern Seismological Journal,28(2):189–191 (in Chinese).
    Backus G E,Gilbert F. 1970. Uniqueness in the inversion of inaccurate gross Earth data[J]. Phil Trans R Soc Lond A,266:123–192. doi: 10.1098/rsta.1970.0005
    Bao X W,Song X D,Li J T. 2015. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth Planet Sci Lett,417:132–141. doi: 10.1016/j.jpgl.2015.02.024
    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/gji.2007.169.issue-3
    Ditmar P G,Yanovskaya T B. 1987. A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity[J]. Izv Akad Nauk SSSR Fiz Zeml,6:30–60.
    Fang L H,Wu J P,Ding Z F,Panza G F. 2010. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise[J]. Geophys J Int,181(2):1171–1182.
    Li Y H,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. An upper-mantle S-wave velocity model for east Asia from Rayleigh wave tomography[J]. Earth Planet Sci Lett,377/378:367–377. doi: 10.1016/j.jpgl.2013.06.033
    Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
    Wang B S,Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. J Geophy Res,115(B6):B06308.
    Wang W L,Wu J P,Fang L H,Lai G J,Yang T,Cai Y. 2014. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. J Geophy Res,119(2):1061–1078. doi: 10.1002/2013JB010317
    Wessel P,Smith W H F. 1998. New,improved version of Generic Mapping Tools Released[J]. Eos Trans AGU,79(47):579. doi: 10.1029/98EO00426
    Yanovskaya T B,Ditmar P G. 1990. Smoothness criteria in surface wave tomography[J]. Geophys J Int,102(1):63–72. doi: 10.1111/gji.1990.102.issue-1
    Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2
  • Related Articles

Catalog

    Article views (2865) PDF downloads (94) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return