Wei Zigen, Chu Risheng, Yang Xiaolin, Xie Jun, Tian Zhonghua, Ling Yuan, Dong Feifei. 2019: Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas. Acta Seismologica Sinica, 41(4): 445-458. DOI: 10.11939/jass.20180145
Citation: Wei Zigen, Chu Risheng, Yang Xiaolin, Xie Jun, Tian Zhonghua, Ling Yuan, Dong Feifei. 2019: Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas. Acta Seismologica Sinica, 41(4): 445-458. DOI: 10.11939/jass.20180145

Crustal structure and seismic activity in the Hanzhong basin and its adjacent areas

More Information
  • Received Date: December 16, 2018
  • Revised Date: January 28, 2019
  • Available Online: July 25, 2019
  • Published Date: June 30, 2019
  • In order to explore the deep dynamic mechanism and seismogenic structural characteristics in the Hanzhong basin, this paper used the ambient noise tomography, joint inversion of the multi-frequency receiver function and surface wave, and the time-depth conversion method of Ps phase from the Moho to image the crustal S-wave velocity and thickness in the Hanzhong basin and its adjacent areas. Then, we further analyzed the relationship between the crustal structure and seismic activity in the studied region. The results show that the sedimentary thickness and velocity of shallow surface are different in different areas of the Hanzhong basin; in some areas of the studied region Moho surface varies gently with a Ps/P ratio less than 0.2. There are few earthquakes in the Hanzhong basin, and the earthquake distribution within 10 km around the basin is mainly controlled by faults. The upper and lower interfaces of the focal depth (4−16 km) correspond to the bottom of the low-velocity region and the top of the high-velocity region, respectively. The uneven sedimentary thickness and gradual crust-mantle transitional zone obtained in this paper are closely related to the triple junction tectonic position of the Hanzhong basin among the Qinling tectonic belt, the Dabashan folded belt and the Tibetan Plateau. The crustal structure and seismicity characteristics obtained in this paper can provide useful information for the study on the deep dynamic mechanism and seismogenic environment in the Hanzhong basin.
  • 邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030.
    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.
    甘卫军,沈正康,张培震,任金卫,万永革,周德敏. 2004. 青藏高原地壳水平差异运动的GPS观测研究[J]. 大地测量与地球动力学,24(1):29–35.
    Gan W J,Shen Z K,Zhang P Z,Ren J W,Wan Y G,Zhou D M. 2004. Horizontal crustal movement of Tibetan Plateau from GPS measurements[J]. Journal of Geodesy and Geodynamics,24(1):29–35 (in Chinese).
    国家测震台网数据备份中心. 2007. 国家测震台网地震波形数据[DB/OL]. 中国地震局地球物理研究所. http://www.seisdmc.ac.cn. doi: 10.11998/SeisDmc/SN.
    Data Management Centre of China National Seismic Network. 2007. Waveform data of China National Seismic Network[DB/OL]. Institute of Geophysics, China Earthquake Administration. http://www.seisdmc.ac.cn. doi:10.11998/SeisDmc/SN (in Chinese).
    国家地震局震害防御司. 1995. 中国历史强震目录(公元前23世纪—公元1911年)[M]. 北京: 地震出版社: 1−514.
    Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. Catalog of Chinese History Strong Earthquakes From 23rd Century BC to 1911 AD)[M]. Beijing: Seismological Press: 1−514 (in Chinese).
    胡家富,朱雄关,夏静瑜,陈赟. 2005. 利用面波和接收函数联合反演滇西地区壳幔速度结构[J]. 地球物理学报,48(5):1069–1076. doi: 10.3321/j.issn:0001-5733.2005.05.013
    Hu J F,Zhu X G,Xia J Y,Chen Y. 2005. Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the west Yunnan area[J]. Chinese Journal of Geophysics,48(5):1069–1076 (in Chinese). doi: 10.1002/cjg2.750
    李晓妮,冯希杰,任隽,李高阳,李苗,王夫运,姬计法. 2013. 陕南汉中盆地西部梁山南缘断裂隐伏段的活动性鉴定[J]. 地震学报,35(4):534–542. doi: 10.3969/j.issn.0253-3782.2013.04.008
    Li X N,Feng X J,Ren J,Li G Y,Li M,Wang F Y,Ji J F. 2013. Activity identification of the buried segment of Liangshan south margin fault in the west of Hanzhong basin[J]. Acta Seismologica Sinica,35(4):534–542 (in Chinese).
    刘启元,李昱,陈九辉,van der Hilst R D,郭飚,王峻,齐少华,李顺成. 2010. 基于贝叶斯理论的接收函数与环境噪声联合反演[J]. 地球物理学报,53(11):2603–2612.
    Liu Q Y,Li Y,Chen J H,van der Hilst R D,Guo B,Wang J,Qi S H,Li S C. 2010. Joint inversion of receiver function and ambient noise based on Bayesian theory[J]. Chinese Journal of Geophysics,53(11):2603–2612 (in Chinese).
    唐明帅,葛粲,郑勇,王海涛. 2013. 短周期地震仪接收函数的可行性分析:以新疆和田地震台阵为例[J]. 地球物理学报,56(8):2670–2680. doi: 10.6038/cjg20130816
    Tang M S,Ge C,Zheng Y,Wang H T. 2013. Feasibility analysis of short-period seismograph receiver function:An example of Hotan Seismic Array,Xinjiang[J]. Chinese Journal of Geophysics,56(8):2670–2680 (in Chinese).
    王明明. 2013. 汉中盆地发育机制及构造演化研究[D]. 北京: 中国地震局地质研究所: 4−8.
    Wang M M. 2013. A Study on Developmental Mechanism and Tectonic Evolution of the Hanzhong Basin[D]. Beijing: Institute of Geology, China Earthquake Administrator: 4−8 (in Chinese).
    徐杰,计凤桔,周本刚. 2012. 有关我国新构造运动起始时间的探讨[J]. 地学前缘,19(5):284–292.
    Xu J,Ji F J,Zhou B G. 2012. On the lower chronological boundary of the Neotectonic period in China[J]. Earth Science Frontiers,19(5):284–292 (in Chinese).
    张国伟,程顺有,郭安林,董云鹏,赖绍聪,姚安平. 2004. 秦岭—大别中央造山系南缘勉略古缝合带的再认识:兼论中国大陆主体的拼合[J]. 地质通报,23(9/10):846–853.
    Zhang G W,Cheng S Y,Guo A L,Dong Y P,Lai S C,Yao A P. 2004. Mianlüe paleo-suture on the southern margin of the Central Orogenic System in Qinling-Dabie:With a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China,23(9/10):846–853 (in Chinese).
    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. " 国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031
    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese). doi: 10.3969/j.issn.0001-5733.2009.05.031
    Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods[M]. San Francisco: W. H. Freeman and Company: 133−155.
    Bao X W,Song X D,Xu M J,Wang L S,Sun X X,Mi N,Yu D Y,Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J]. Earth Planet Sci Lett,369/370:129–137. doi: 10.1016/j.jpgl.2013.03.015
    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/gji.2007.169.issue-3
    Campillo M, Roux P. 2014. Crust and lithospheric structure: Seismic imaging and monitoring with ambient noise corre-lations[G]//Treatise on Geophysics (2nd ed). Amsterdam: Elsevier: 391–417.
    Chang S J,Baag C E. 2005. Crustal structure in southern Korea from joint analysis of teleseismic receiver functions and surface-wave dispersion[J]. Bull Seismol Soc Am,95(4):1516–1534. doi: 10.1785/0120040080
    Chen Y L,Niu F L,Liu R F,Huang Z B,Tkalčić H,Sun L,Chan W. 2010. Crustal structure beneath China from receiver function analysis[J]. J Geophys Res,115(B3):B03307. doi: 10.1029/2009JB006386
    Ditmar P G, Yanovskaya T B. 1987. A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity[J]. Izv Akad Nauk SSSIt, Fiz Zemli, 6: 30−60 (in Russian).
    He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199(3):1910–1918. doi: 10.1093/gji/ggu365
    Herrmann R B. 2013. Computer programs in seismology:An evolving tool for instruction and research[J]. Seismol Res Lett,84(6):1081–1088. doi: 10.1785/0220110096
    Julià J,Ammon C J,Herrmann R B,Correig A M. 2000. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophys J Int,143(1):99–112. doi: 10.1046/j.1365-246x.2000.00217.x
    Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree global model of Earth’s crust[C]//EGU General Assembly Conference Abstract, Vol. 15. Vienna, Austria: EGU: 2658.
    Li Z W,Ni S D,Zhang B L,Bao F,Zhang S Q,Deng Y,Yuen D A. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophys Res Lett,43(10):4954–4961. doi: 10.1002/grl.v43.10
    Lin A M,Rao G,Yan B. 2014. Structural analysis of the right-lateral strike-slip Qingchuan fault,northeastern segment of the Longmen Shan thrust belt,central China[J]. J Struct Geol,68:227–244. doi: 10.1016/j.jsg.2014.09.014
    Ling Y,Chen L,Wei Z G,Jiang M M,Wang X. 2017. Crustal S-velocity structure and radial anisotropy beneath the southern part of central and western North China Craton and the adjacent Qilian Orogenic Belt from ambient noise tomography[J]. Science China Earth Science,60(10):1752–1768. doi: 10.1007/s11430-017-9092-8
    Liu Z,Tian X B,Gao R,Wang G C,Wu Z B,Zhou B B,Tan P,Nie S T,Yu G P,Zhu G H,Xu X. 2017. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth Planet Sci Lett,480:33–41. doi: 10.1016/j.jpgl.2017.09.048
    Okay A I,Kaşlılar-Özcan A,Imren C,Boztepe-Güney A,Demirbağ E,Kuşçu İ. 2000. Active faults and evolving strike-slip basins in the Marmara Sea,northwest Turkey:A multichannel seismic reflection study[J]. Tectonophysics,321(2):189–218. doi: 10.1016/S0040-1951(00)00046-9
    Sambridge M. 1999. Geophysical inversion with a neighbourhood algorithm:I. Searching a parameter space[J]. Geophys J Int,138(2):479–494. doi: 10.1046/j.1365-246X.1999.00876.x
    Shen W S,Ritzwoller M H,Kang D,Kim Y H,Lin F C,Ning J Y,Wang W T,Zheng Y,Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys J Int,206(2):954–979. doi: 10.1093/gji/ggw175
    Wang C Y,Sandvol E,Zhu L P,Lou H,Yao Z X,Luo X H. 2014. Lateral variation of crustal structure in the Ordos block and surrounding regions,North China,and its tectonic implications[J]. Earth Planet Sci Lett,387:198–211. doi: 10.1016/j.jpgl.2013.11.033
    Wang W L,Wu J P,Fang L H,Lai G J,Cai Y. 2017. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth Planet Sci Lett,462:76–85. doi: 10.1016/j.jpgl.2016.12.040
    Wei Z G,Chen L,Xu W W. 2011. Crustal thickness and vP/vS ratio of the central and western North China Craton and its tectonic implications[J]. Geophys J Int,186(2):385–389. doi: 10.1111/j.1365-246X.2011.05089.x
    Wei Z G,Chen L,Wang B Y. 2013. Regional variations in crustal thickness and vP/vS ratio beneath the central-western North China Craton and adjacent regions[J]. Geol J,48(5):531–542. doi: 10.1002/gj.v48.5
    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y
    Wei Z G,Chen L,Li Z W,Ling Y,Li J. 2016. Regional variation in Moho depth and Poisson’s ratio beneath eastern China and its tectonic implications[J]. J Asian Earth Sci,115:308–320. doi: 10.1016/j.jseaes.2015.10.010
    Xu X W,Wen X Z,Yu G H,Chen G H,Klinger Y,Hubbard J,Shaw J. 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake,China[J]. Geology,37(6):515–518. doi: 10.1130/G25462A.1
    Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/gji.2006.166.issue-2
    Zhang P Z,Wen X Z,Shen Z K,Chen J H. 2010. Oblique,high-angle,listric-reverse faulting and associated development of strain:The Wenchuan earthquake of May 12,2008,Sichuan,China[J]. Ann Rev Earth Planet Sci,38:353–382. doi: 10.1146/annurev-earth-040809-152602
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 夏文鹤,谢万洋,唐印东,李皋,韩玉娇. 砂样岩屑图像特征的岩性智能高效识别. 石油地球物理勘探. 2023(03): 495-506 .

    Other cited types(1)

Catalog

    Article views (1438) PDF downloads (102) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return