Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement. Acta Seismologica Sinica42(2):163−176. doi:10.11939/jass.20190070. DOI: 10.11939/jass.20190070
Citation: Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement. Acta Seismologica Sinica42(2):163−176. doi:10.11939/jass.20190070. DOI: 10.11939/jass.20190070

Seismic phase identification using the convolutional neural networks based on sample enhancement

More Information
  • Received Date: April 10, 2019
  • Revised Date: June 02, 2019
  • Available Online: May 21, 2020
  • In order to quickly and efficiently identify earthquake events and pick up seismic phases from seismic data, this paper a small sample enhancement-based automatic phase picking method based on a convolutional neural network. A total of three months of data from the L0230 station in Linzhi, Tibet were used as a training set, and one-month continuous waveform data from the other six stations in this area were used as the test sets. Gaussian noise, random noise splicing, random selection of noise and random interception of seismic events were used to enhance the training set so as to improve the accuracy. The results show that the accuracy of the model on the test set was 80% before the samples were enhanced, and up to 97% after that, suggesting that the sample enhancement effectively improves the generalization perfor-mance and anti-interference ability of the model. Within the 0.5 s error range, the accuracy of the seismic phase automatic picking is higher than 81%, and within the 1.0 s error range, the accuracy is higher than 95%. Moreover, it is able to detect mislabeled and missing seismic phases in manually picking seismic phases by this method.

  • 常旭,刘伊克. 2002. 地震记录的广义分维及其应用[J]. 地球物理学报,45(6):839–846. doi: 10.3321/j.issn:0001-5733.2002.06.011
    Chang X,Liu Y K. 2002. The generalized fractal dimension of seismic records and its applications[J]. Chinese Journal of Geophysics,45(6):839–846 (in Chinese).
    何先龙,佘天莉,高峰. 2016. 一种地震P波和S波初至时间自动拾取的新方法[J]. 地球物理学报,59(7):2519–2527. doi: 10.6038/cjg20160717
    He X L,She T L,Gao F. 2016. A new method for picking up arrival times of seismic P and S waves automatically[J]. Chinese Journal of Geophysics,59(7):2519–2527 (in Chinese).
    刘晗,张建中. 2014. 微震信号自动检测的STA/LTA算法及其改进分析[J]. 地球物理学进展,29(4):1708–1714. doi: 10.6038/pg20140429
    Liu H,Zhang J Z. 2014. STA/LTA algorithm analysis and improvement of microseismic signal automatic detection[J]. Progress in Geophysics,29(4):1708–1714 (in Chinese). doi: 10.6038/pg20140429
    王娟,刘俊民,范万春. 2004. 神经网络在震相识别中的应用[J]. 现代电子技术,27(8):35–37. doi: 10.3969/j.issn.1004-373X.2004.08.014
    Wang J,Liu J M,Fan W C. 2004. Application of neural network in the discrimination of seismical signal[J]. Modern Electro-nics Technique,27(8):35–37 (in Chinese).
    王继,陈九辉,刘启元,李顺成,郭飚. 2006. 流动地震台阵观测初至震相的自动检测[J]. 地震学报,28(1):42–51. doi: 10.3321/j.issn:0253-3782.2006.01.006
    Wang J,Chen J H,Liu Q Y,Li S C,Guo B. 2006. Automatic onset phase picking for portable seismic array observation[J]. Acta Seismologica Sinica,28(1):42–51 (in Chinese).
    王继,陈九辉. 2008. 应用人工神经元网络方法自动检测地震事件[J]. 地震地磁观测与研究,29(3):41–45. doi: 10.3969/j.issn.1003-3246.2008.03.007
    Wang J,Chen J H. 2008. An automatic seismic event detection method based on artificial neural network[J]. Seismological and Geomagnetic Observation and Research,29(3):41–45 (in Chinese).
    于子叶,储日升,盛敏汉. 2018. 深度神经网络拾取地震P和S波到时[J]. 地球物理学报,61(12):4873–4886. doi: 10.6038/cjg2018L0725
    Yu Z Y,Chu R S,Sheng M H. 2018. Pick onset time of P and S phase by deep netural network[J]. Chinese Journal of Geophy-sics,61(12):4873–4886 (in Chinese).
    赵大鹏,刘希强,刘尧兴,王志铄,赵晖,张亚琳. 2013. 高阶统计量及AIC方法在区域地震事件和直达P波初动识别中的应用[J]. 地震地磁观测与研究,34(5):61–69. doi: 10.3969/j.issn.1003-3246.2013.05/06.010
    Zhao D P,Liu X Q,Liu Y X,Wang Z S,Zhao H,Zhang Y L. 2013. Detection of regional seismic events by high order statistics method and automatic identification of direct P-wave first motion by AIC method[J]. Seismological and Geomagnetic Observation and Research,34(5):61–69 (in Chinese).
    赵明,陈石,Yuen D. 2019. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报,62(1):374–382. doi: 10.6038/cjg2019M0151
    Zhao M,Chen S,Yuen D. 2019. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics,62(1):374–382 (in Chinese).
    Akaike H. 1974. A new look at the statistical model identification[J]. IEEE Trans Automat Control,19(6):716–723. doi: 10.1109/TAC.1974.1100705
    Allen R V. 1978. Automatic earthquake recognition and timing from single traces[J]. Bull Seismol Soc Am,68(5):1521–1532.
    Allen R V. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242.
    Boschetti F,Dentith M D,List R D. 1996. A fractal-based algorithm for detecting first arrivals on seismic trances[J]. Geophysics,61(4):1095–1102. doi: 10.1190/1.1444030
    Dai H C,MacBeth C. 1997. The application of back-propagation neural network to automatic picking seismic arrivals from single-component recordings[J]. J Geophys Res:Solid Earth,102(B7):15105–15113. doi: 10.1029/97JB00625
    Earle R S,Shearer P M. 1994. Characterization of global seismograms using an automatic-picking algorithm[J]. Bull Seismol Soc Am,84(2):366–376.
    Falconner K. 1990. Fractal Geometry: Mathematical Foundations and Application[M]. New York: John Wiley & Sons: 155.
    Kingma D P, Ba J. 2014. Adam: A method for stochastic optimization[J/OL]. arXiv: 1412.6980
    Küperkoch L,Meier T,Brüstle A,Lee J,Friederich W. 2012. Automated determination of S-phase arrival times using auto-regressive prediction:Application to local and regional distances[J]. Geophys J Int,188(2):687–702. doi: 10.1111/j.1365-246X.2011.05292.x
    Molyneux J B,Schmitt D R. 1999. First-break timing:Arrival onset times by direct correlation[J]. Geophysics,64(5):1492–1501.
    Perol T,Gharbi M,Denolle M. 2018. Convolutional neural network for earthquake detection and location[J]. Sci Adv,4(2):e1700578. doi: 10.1126/sciadv.1700578
    Poupinet G,Ellsworth W L,Frechet J. 1984. Monitoring velocity variations in the crust using earthquake doublets:An application to the Calaveras fault,California[J]. J GeophysRes,89(B7):5719–5731. doi: 10.1029/JB089iB07p05719
    Ross Z E, Meier M A, Hauksson E, Heaton T H. 2018. Generalized seismic phase detection with deep learning[J/OL]. arXiv: 1805.01075.
    Rubin A M. 2002. Using repeating earthquakes to correct high-precision earthquake catalogs for time-dependent station delays[J]. Bull Seismol Soc Am,92(5):1647–1659. doi: 10.1785/0120010180
    Schaff D P,Richards P G. 2004. Repeating seismic events in China[J]. Science,303(5661):1176–1178. doi: 10.1126/science.1093422
    Sleeman R,van Eck T. 1999. Robust automatic P-phase picking:An on-line implementation in the analysis of broadband seismogram recordings[J]. Phys Earth Planet Int,113(1/2/3/4):265–275.
    Takanami T,Kitagawa G. 1993. Multivariate time-series model to estimate the arrival times of S-waves[J]. Comput Geosci,19(2):295–301. doi: 10.1016/0098-3004(93)90127-Q
    Tong C,Kennett B L N. 1996. Automatic seismic event recognition and later phase identification for broadband seismograms[J]. Bull Seismol Soc Am,86(6):1896–1909.
    Zhu W Q, Beroza G C. 2018. PhaseNet: A deep-neural-network-based seismic arrival time picking method[J/OL]. arXiv: 1803.03211.
  • Related Articles

  • Cited by

    Periodical cited type(8)

    1. 叶青,王晓,杜学彬,解滔,范晔,周振贵,刘高川. 中国地震井下地电阻率研究进展. 吉林大学学报(地球科学版). 2022(03): 669-683 .
    2. Guoze ZHAO,Xuemin ZHANG,Juntao CAI,Yan ZHAN,Qinzhong MA,Ji TANG,Xuebin DU,Bing HAN,Lifeng WANG,Xiaobin CHEN,Qibin XIAO,Xiangyu SUN,Zeyi DONG,Jijun WANG,Jihong ZHANG,Ye FAN,Tao YE. A review of seismo-electromagnetic research in China. Science China(Earth Sciences). 2022(07): 1229-1246 .
    3. 赵国泽,张学民,蔡军涛,詹艳,马钦忠,汤吉,杜学彬,韩冰,王立凤,陈小斌,肖骑彬,孙翔宇,董泽义,王继军,张继红,范晔,叶涛. 中国地震电磁研究现状和发展趋势. 中国科学:地球科学. 2022(08): 1499-1515 .
    4. 鲍海英,夏忠,毕雪梅,李鸿宇,王昕. 江苏海安顾庄观测站井下地电阻率观测影响系数分析. 地震. 2022(03): 192-203 .
    5. 黄明威,张琪,李梦莹,杨牧萍. 新城子井下地电阻率观测影响系数分析. 防灾减灾学报. 2020(01): 49-56 .
    6. 高曙德,罗维斌,张博,武善艺,李娜,曹玲玲,窦喜英. 编码源地电观测对干扰信号的抑制试验——以通渭台观测为例. 地震工程学报. 2020(05): 1096-1103 .
    7. 毛先进,段炜,庄儒新,杨玲英,赵晋民. 井下地电阻率观测中布极参数的确定方法. 地震研究. 2019(01): 96-101 .
    8. 樊晓春,解滔,吴帆,袁慎杰. 井下地电阻率观测影响系数分析——以江宁地震台为例. 中国地震. 2019(02): 347-358 .

    Other cited types(1)

Catalog

    Article views (1260) PDF downloads (82) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return