Shen Z Y,Wu Q J. 2022. Detection of tele-local seismic phases by convolutional neural network and model interpretation. Acta Seismologica Sinica44(6):961−979. DOI: 10.11939/jass.20210048
Citation: Shen Z Y,Wu Q J. 2022. Detection of tele-local seismic phases by convolutional neural network and model interpretation. Acta Seismologica Sinica44(6):961−979. DOI: 10.11939/jass.20210048

Detection of tele-local seismic phases by convolutional neural network and model interpretation

More Information
  • Received Date: April 05, 2021
  • Revised Date: April 28, 2021
  • Available Online: December 04, 2022
  • Published Date: December 12, 2022
  • A better knowledge about the interrelationship between convolutional neural network (CNN) performance and its sample selection, training procedure, structure, etc., will be beneficial to employ this technique efficiently. We use CNN to detect tele-seismic P-S and local seismic Pg-Sg phases recorded by the Beijing National Earth Observatory. From the results by different parameter associations, it shows that the moderate layer depth, proper regularization, and data wash can significantly enhance the CNN performance while residual blocks giving only marginal improvement. Furthermore, we employ class model visualization and smooth GradCAM++ techniques to interpret the optimal CNN model. The results show that our model has learned the fundamental features of the seismic phases, with decision-sensitive distribution agreeing well with a priori knowledge. Also we use CNN model to scan the continuous seismic waveform, which exhibits its potentiality in seismic phase detection. Lastly, topics on sample selection, model framework, sample labelling, and ensemble learning are discussed for further work.
  • 李健,王晓明,张英海,王卫东,商杰,盖磊. 2020. 基于深度卷积神经网络的地震震相拾取方法研究[J]. 地球物理学报,63(4):1591–1606. doi: 10.6038/cjg2020N0057
    Li J,Wang X M,Zhang Y H,Wang W D,Shang J,Ge L. 2020. Research on the seismic phase picking method based on the deep convolution neural network[J]. Chinese Journal of Geophysics,63(4):1591–1606 (in Chinese).
    于子叶,储日升,盛敏汉,马海超. 2020. 兼顾速度和精度的深度神经网络震相拾取[J]. 地震学报,42(3):269–282. doi: 10.11939/jass.20190154
    Yu Z Y,Chu R S,Sheng M H,Ma H C. 2020. A new deep neural network for phase picking with balanced speed and accuracy[J]. Acta Seismologica Sinica,42(3):269–282 (in Chinese).
    赵明,陈石,Yuen D. 2019a. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报,62(1):374–382.
    Zhao M,Chen S,Yuen D. 2019a. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics,62(1):374–382 (in Chinese).
    赵明,陈石,房立华,Yuen D A. 2019b. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,62(8):3034–3042.
    Zhao M,Chen S,Fang L H,Yuen D A. 2019b. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics,62(8):3034–3042 (in Chinese).
    中国地震台网中心. 2020. 历史查询[DB/OL]. [2020-05-02]. http://www.ceic.ac.cn/history.
    China Earthquake Networks Center. 2020. History querying[DB/OL]. [2020-05-02]. http://www.ceic.ac.cn/history (in Chinese).
    周本伟,范莉苹,张龙,李珀任,房立华. 2020. 利用卷积神经网络检测地震的方法与优化[J]. 地震学报,42(6):669–683.
    Zhou B W,Fan L P,Zhang L,Li P R,Fang L H. 2020. Earthquake detection using convolutional neural network and its optimization[J]. Acta Seismologica Sinica,42(6):669–683 (in Chinese).
    Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
    Chattopadhyay A, Sarkar A, Howlader P, Balasubramanian V N. 2018. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision WACV). Lake Tahoe: IEEE: 839–847.
    He K M, Zhang X Y, Ren S Q, Sun J. 2015. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision ICCV). Santiago: IEEE: 1026–1034.
    He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition CVPR). Las Vegas: IEEE: 770–778.
    Kingma D P, Ba J. 2015. Adam: A method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: ICLR.
    Mahendran A, Vedaldi A. 2015. Understanding deep image representations by inverting them[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition CVPR). Boston: IEEE: 5188–5196.
    Omeiza D, Speakman S, Cintas C, Weldermariam K. 2019. Smooth Grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models[EB/OL]. [2019-08-03]. https://arxiv.org/pdf/1908.01224v1.pdf.
    Ronneberger O, Fischer P, Brox T. 2015. U-net: Convolutional networks for biomedical image segmentation[C]//Proceeding of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI). Munich: Springer: 234–241.
    Ross Z E,White M C,Vernon F L,Ben-Zion Y. 2016. An improved algorithm for real-time S-wave picking with application to the (augmented) ANZA network in Southern California[J]. Bull Seismol Soc Am,106(5):2013–2022. doi: 10.1785/0120150230
    Saragiotis C D,Hadjileontiadis L J,Rekanos I T,Panas S M. 2004. Automatic P phase picking using maximum kurtosis and κ-statistics criteria[J]. IEEE Geosci Remote Sens Lett,1(3):147–151. doi: 10.1109/LGRS.2004.828915
    Selvaraju R R, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. 2016. Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization[EB/OL]. [2019-12-03]. https://arxiv.org/pdf/1610.02391v1.pdf.
    Simonyan K, Vedaldi A, Zisserman A. 2014. Deep inside convolutional networks: Visualising image classification models and saliency maps[C]//2nd International Conference on Learning Representations. Banff: ICLR.
    Sleeman R,Van Eck T. 1999. Robust automatic P-phase picking:An on-line implementation in the analysis of broadband seismogram recordings[J]. Phys Earth Planet In,113(1/2/3/4):265–275.
    Springenberg T, Dosovitskiy A, Brox T, Riedmiller A. 2014. Striving for simplicity: The all convolutional net[EB/OL]. [2015-04-13]. https://arxiv.org/pdf/1412.6806.pdf.
    USGS. 2020. Magnitude 4.5+ earthquakes, past Day[DB/OL]. [2020-05-02]. https://earthquake.usgs.gov/earthquakes/map/?extent=18.06231,-137.19727&extent=54.31652,-52.82227.
    Zhou B L, Khosla A, Lapedriza G A, Oliva A, Torralba A. 2016. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition CVPR). Las Vegas: IEEE: 2921–2929.
    Zhu L J,Peng Z G,McClellan J,Li C Y,Yao D D,Li Z F,Fang L H. 2019. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 MW7.9 Wenchuan earthquake[J]. Phys Earth Planet In,293:106261. doi: 10.1016/j.pepi.2019.05.004
    Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
  • Related Articles

  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. 丁俊柯,马传璧,张万辉,赵建明,王震坤. 基于EEMD方法提取唐山井水位固体潮响应特征. 地下水. 2024(04): 63-65 .
    2. 吴明,杨晓东,刘洁. 石泉井水位异常与九寨沟7.0级地震关联性探讨. 地震工程学报. 2023(02): 441-446 .
    3. 吕芳,穆慧敏,李艳,郭文峰,姚林鹏,宫静芝. 利用微水试验方法研究井-含水层水力参数及其与地震的对应关系. 地震地质. 2023(03): 638-651 .
    4. 刘伟,白细民,吕少杰,史浙明,齐之钰,何冠儒. 基于井水位气压效应计算含水层的水力参数. 地震地质. 2023(03): 652-667 .
    5. 李继业,晏锐,张思萌,胡澜缤,孟令蕾,周晨. 井水位潮汐响应与小地震调制作用的关系. 地震地质. 2023(03): 668-688 .
    6. 刘阁,姬霄鹤,郭少峰,李志涛. 范县井水位对远场大震的同震响应特征. 华北地震科学. 2023(03): 74-79 .
    7. 洪旭瑜,陈祥开,秦双龙,林加宝. M_S≥6.0地震引起的永安井水位同震响应特征研究. 华南地震. 2023(03): 39-45 .
    8. 胡米东,毛华锋,陈启林,王皓,张杰,霍雨佳,黄群. 茅山断裂带周边地区流体井水位观测特征及机理分析. 高原地震. 2022(04): 21-28 .
    9. 何冠儒,史浙明. 地下水对气压和固体潮响应研究进展. 地震研究. 2021(04): 541-549 .

    Other cited types(0)

Catalog

    Article views (438) PDF downloads (92) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return