Citation: | Shen Z Y,Wu Q J. 2022. Detection of tele-local seismic phases by convolutional neural network and model interpretation. Acta Seismologica Sinica,44(6):961−979. DOI: 10.11939/jass.20210048 |
李健,王晓明,张英海,王卫东,商杰,盖磊. 2020. 基于深度卷积神经网络的地震震相拾取方法研究[J]. 地球物理学报,63(4):1591–1606. doi: 10.6038/cjg2020N0057
|
Li J,Wang X M,Zhang Y H,Wang W D,Shang J,Ge L. 2020. Research on the seismic phase picking method based on the deep convolution neural network[J]. Chinese Journal of Geophysics,63(4):1591–1606 (in Chinese).
|
于子叶,储日升,盛敏汉,马海超. 2020. 兼顾速度和精度的深度神经网络震相拾取[J]. 地震学报,42(3):269–282. doi: 10.11939/jass.20190154
|
Yu Z Y,Chu R S,Sheng M H,Ma H C. 2020. A new deep neural network for phase picking with balanced speed and accuracy[J]. Acta Seismologica Sinica,42(3):269–282 (in Chinese).
|
赵明,陈石,Yuen D. 2019a. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报,62(1):374–382.
|
Zhao M,Chen S,Yuen D. 2019a. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics,62(1):374–382 (in Chinese).
|
赵明,陈石,房立华,Yuen D A. 2019b. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,62(8):3034–3042.
|
Zhao M,Chen S,Fang L H,Yuen D A. 2019b. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics,62(8):3034–3042 (in Chinese).
|
中国地震台网中心. 2020. 历史查询[DB/OL]. [2020-05-02]. http://www.ceic.ac.cn/history.
|
China Earthquake Networks Center. 2020. History querying[DB/OL]. [2020-05-02]. http://www.ceic.ac.cn/history (in Chinese).
|
周本伟,范莉苹,张龙,李珀任,房立华. 2020. 利用卷积神经网络检测地震的方法与优化[J]. 地震学报,42(6):669–683.
|
Zhou B W,Fan L P,Zhang L,Li P R,Fang L H. 2020. Earthquake detection using convolutional neural network and its optimization[J]. Acta Seismologica Sinica,42(6):669–683 (in Chinese).
|
Allen R. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242. doi: 10.1785/BSSA07206B0225
|
Chattopadhyay A, Sarkar A, Howlader P, Balasubramanian V N. 2018. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe: IEEE: 839–847.
|
He K M, Zhang X Y, Ren S Q, Sun J. 2015. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE: 1026–1034.
|
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE: 770–778.
|
Kingma D P, Ba J. 2015. Adam: A method for stochastic optimization[C]//3rd International Conference on Learning Representations. San Diego: ICLR.
|
Mahendran A, Vedaldi A. 2015. Understanding deep image representations by inverting them[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE: 5188–5196.
|
Omeiza D, Speakman S, Cintas C, Weldermariam K. 2019. Smooth Grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models[EB/OL]. [2019-08-03]. https://arxiv.org/pdf/1908.01224v1.pdf.
|
Ronneberger O, Fischer P, Brox T. 2015. U-net: Convolutional networks for biomedical image segmentation[C]//Proceeding of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich: Springer: 234–241.
|
Ross Z E,White M C,Vernon F L,Ben-Zion Y. 2016. An improved algorithm for real-time S-wave picking with application to the (augmented) ANZA network in Southern California[J]. Bull Seismol Soc Am,106(5):2013–2022. doi: 10.1785/0120150230
|
Saragiotis C D,Hadjileontiadis L J,Rekanos I T,Panas S M. 2004. Automatic P phase picking using maximum kurtosis and κ-statistics criteria[J]. IEEE Geosci Remote Sens Lett,1(3):147–151. doi: 10.1109/LGRS.2004.828915
|
Selvaraju R R, Das A, Vedantam R, Cogswell M, Parikh D, Batra D. 2016. Grad-CAM: Why did you say that? Visual explanations from deep networks via gradient-based localization[EB/OL]. [2019-12-03]. https://arxiv.org/pdf/1610.02391v1.pdf.
|
Simonyan K, Vedaldi A, Zisserman A. 2014. Deep inside convolutional networks: Visualising image classification models and saliency maps[C]//2nd International Conference on Learning Representations. Banff: ICLR.
|
Sleeman R,Van Eck T. 1999. Robust automatic P-phase picking:An on-line implementation in the analysis of broadband seismogram recordings[J]. Phys Earth Planet In,113(1/2/3/4):265–275.
|
Springenberg T, Dosovitskiy A, Brox T, Riedmiller A. 2014. Striving for simplicity: The all convolutional net[EB/OL]. [2015-04-13]. https://arxiv.org/pdf/1412.6806.pdf.
|
USGS. 2020. Magnitude 4.5+ earthquakes, past Day[DB/OL]. [2020-05-02]. https://earthquake.usgs.gov/earthquakes/map/?extent=18.06231,-137.19727&extent=54.31652,-52.82227.
|
Zhou B L, Khosla A, Lapedriza G A, Oliva A, Torralba A. 2016. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE: 2921–2929.
|
Zhu L J,Peng Z G,McClellan J,Li C Y,Yao D D,Li Z F,Fang L H. 2019. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 MW7.9 Wenchuan earthquake[J]. Phys Earth Planet In,293:106261. doi: 10.1016/j.pepi.2019.05.004
|
Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
|