Yu Ziye, Chu Risheng, Sheng Minhan, Ma Haichao. 2020: A new deep neural network for phase picking with balanced speed and accuracy. Acta Seismologica Sinica, 42(3): 269-282. DOI: 10.11939/jass.20190154
Citation: Yu Ziye, Chu Risheng, Sheng Minhan, Ma Haichao. 2020: A new deep neural network for phase picking with balanced speed and accuracy. Acta Seismologica Sinica, 42(3): 269-282. DOI: 10.11939/jass.20190154

A new deep neural network for phase picking with balanced speed and accuracy

More Information
  • Received Date: October 10, 2019
  • Revised Date: January 02, 2020
  • Available Online: August 16, 2020
  • Published Date: July 20, 2020
  • The deep neural network (DNN) has achieved good results in phase picking. As a high complexity machine learning model, DNN suffers from high computational cost to achieve high accuracy. The experimental results show that there is no need to build a high complexity model for phase picking. So, we designed four network models with different complexity to improve speed and accuracy of phase picking based on characteristics of seismic waveforms, which offers a choice of accuracy and/or speed of the phase picking. And then we compared our results with those obtained from four existing DNN models, and verified the relative high speed and accuracy. More importantly, the DNN models can be compressed to within 2.0 MB after a variety of model compression methods, which allows the structure to perform high-speed phase picking with relatively high accuracy on low-power-consumption devices.
  • 于子叶,储日升,盛敏汉. 2018. 深度神经网络拾取地震P和S波到时[J]. 地球物理学报,<bold>61</bold>(12):4873–4886. doi: 10.6038/cjg2018L0725
    Yu Z Y,Chu R S,Sheng M H. 2018. Pick onset time of P and S phase by deep neural network[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>61</bold>(12):4873–4886 (in Chinese). doi: 10.6038/cjg2018L0725(inChinese)
    赵明,陈石,房立华,Yuen D A. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,<bold>62</bold>(8):3034–3042. doi: 10.6038/cjg2019M0495
    Zhao M,Chen S,Fang L H,Yuen D A. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>62</bold>(8):3034–3042 (in Chinese). doi: 10.6038/cjg2019M0495
    Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation[Z]. arXiv preprint. arXiv: 1406.1078.
    Courbariaux M, Bengio Y, David J P. 2014. Training deep neural networks with low precision multiplications[Z]. arXiv preprint. arXiv: 1412.7024.
    García L,Álvarez I,Benítez C,Titos M,Titos M,Bueno Á,Mota S,De La Torre Á,Segura J C,Alguacil G,Díaz-Moreno A,Prudencio J,García-Yeguas A,Ibáñez J M,Zuccarello L,Cocina O,Patanè D. 2016. Advances on the automatic estimation of the P-wave onset time[J]. <italic>Ann Geophys</italic>,<bold>59</bold>(4):S0434.
    He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 770–778.
    Hinton G, Vinyals O, Dean J. 2015. Distilling the knowledge in a neural network[Z]. arXiv preprint. arXiv: 1503.02531.
    Hochreiter S,Schmidhuber J. 1997. Long short-term memory[J]. <italic>Neural Comput</italic>,<bold>9</bold>(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735
    Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto M, Adam H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications[Z]. arXiv preprint. arXiv: 1704.04861.
    Hu L L,Zheng X D,Duan Y T,Yan X F,Hu Y,Zhang X L. 2019. First-arrival picking with a U-net convolutional network[J]. <italic>Geophysics</italic>,<bold>84</bold>(6):1–58. doi: 10.1190/geo2019-1029-tiogeo.1
    Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift[Z]. arXiv preprint. arXiv: 1502.03167.
    LeCun Y,Bottou L,Bengio Y,Haffner P. 1998. Gradient-based learning applied to document recognition[J]. <italic>Proc IEEE</italic>,<bold>86</bold>(11):2278–2324. doi: 10.1109/5.726791
    Maass W. 1997. Networks of spiking neurons:The third generation of neural network models[J]. <italic>Neu Networks</italic>,<bold>10</bold>(9):1659–1671. doi: 10.1016/S0893-6080(97)00011-7
    Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234–241.
    Ross Z E,Meier M A,Hauksson E. 2018. P wave arrival picking and first‐motion polarity determination with deep learning[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>123</bold>(6):5120–5129. doi: 10.1029/2017JB015251
    Rumelhart D E,Hinton G E,Williams R J. 1986. Learning representations by back-propagating errors[J]. <italic>Nature</italic>,<bold>323</bold>(6088):533–536. doi: 10.1038/323533a0
    Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. 2018. MobileNetV2: Inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE: 4510–4520.
    Schuster M,Paliwal K K. 1997. Bidirectional recurrent neural networks[J]. <italic>IEEE Trans Signal Process</italic>,<bold>45</bold>(11):2673–2681. doi: 10.1109/78.650093
    van der Baan M,Jutten C. 2000. Neural networks in geophysical applications[J]. <italic>Geophysics</italic>,<bold>65</bold>(4):1032–1047. doi: 10.1190/1.1444797
    van den Oord A, Dieleman S, Zen H G, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K. 2016. WaveNet: A generative model for raw audio[Z]. arXiv preprint. arXiv: 1609.03499.
    Zeiler M D, Krishnan D, Taylor G W, Fergus R. 2010. Deconvolutional networks[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE: 2528–2535.
    Zhang K P,Zhang Z P,Li Z F,Qiao Y. 2016. Joint face detection and alignment using multitask cascaded convolutional networks[J]. <italic>IEEE Signal Process Lett</italic>,<bold>23</bold>(10):1499–1503. doi: 10.1109/LSP.2016.2603342
    Zhao Y,Takano K. 1999. An artificial neural network approach for broadband seismic phase picking[J]. <italic>Bull Seismol Soc Am</italic>,<bold>89</bold>(3):670–680.
    Zhou Y J,Yue H,Kong Q K,Zhou S Y. 2019. Hybrid event detection and phase‐picking algorithm using convolutional and recurrent neural networks[J]. <italic>Seismol Res Lett</italic>,<bold>90</bold>(3):1079–1087. doi: 10.1785/0220180319
    Zhu W Q,Beroza G C. 2018. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. <italic>Geophys J Int</italic>,<bold>216</bold>(1):261–273.
  • Related Articles

  • Cited by

    Periodical cited type(3)

    1. 申中寅,吴庆举. 卷积神经网络在远-近地震震相拾取中的应用及模型解释. 地震学报. 2022(06): 961-979 . 本站查看
    2. 廖诗荣,张红才,范莉苹,李珀任,黄玲珠,房立华,秦敏. 实时智能地震处理系统研发及其在2021年云南漾濞M_S6.4地震中的应用. 地球物理学报. 2021(10): 3632-3645 .
    3. Ziye Yu,Risheng Chu,Weitao Wang,Minhan Sheng. CRPN: A cascaded classification and regression DNN framework for seismic phase picking. Earthquake Science. 2020(02): 53-61 .

    Other cited types(2)

Catalog

    Article views (946) PDF downloads (71) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return