Citation: | Yu Ziye, Chu Risheng, Sheng Minhan, Ma Haichao. 2020: A new deep neural network for phase picking with balanced speed and accuracy. Acta Seismologica Sinica, 42(3): 269-282. DOI: 10.11939/jass.20190154 |
于子叶,储日升,盛敏汉. 2018. 深度神经网络拾取地震P和S波到时[J]. 地球物理学报,<bold>61</bold>(12):4873–4886. doi: 10.6038/cjg2018L0725
|
Yu Z Y,Chu R S,Sheng M H. 2018. Pick onset time of P and S phase by deep neural network[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>61</bold>(12):4873–4886 (in Chinese). doi: 10.6038/cjg2018L0725(inChinese)
|
赵明,陈石,房立华,Yuen D A. 2019. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报,<bold>62</bold>(8):3034–3042. doi: 10.6038/cjg2019M0495
|
Zhao M,Chen S,Fang L H,Yuen D A. 2019. Earthquake phase arrival auto-picking based on U-shaped convolutional neural network[J]. <italic>Chinese Journal of Geophysics</italic>,<bold>62</bold>(8):3034–3042 (in Chinese). doi: 10.6038/cjg2019M0495
|
Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation[Z]. arXiv preprint. arXiv: 1406.1078.
|
Courbariaux M, Bengio Y, David J P. 2014. Training deep neural networks with low precision multiplications[Z]. arXiv preprint. arXiv: 1412.7024.
|
García L,Álvarez I,Benítez C,Titos M,Titos M,Bueno Á,Mota S,De La Torre Á,Segura J C,Alguacil G,Díaz-Moreno A,Prudencio J,García-Yeguas A,Ibáñez J M,Zuccarello L,Cocina O,Patanè D. 2016. Advances on the automatic estimation of the P-wave onset time[J]. <italic>Ann Geophys</italic>,<bold>59</bold>(4):S0434.
|
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE: 770–778.
|
Hinton G, Vinyals O, Dean J. 2015. Distilling the knowledge in a neural network[Z]. arXiv preprint. arXiv: 1503.02531.
|
Hochreiter S,Schmidhuber J. 1997. Long short-term memory[J]. <italic>Neural Comput</italic>,<bold>9</bold>(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, Andreetto M, Adam H. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications[Z]. arXiv preprint. arXiv: 1704.04861.
|
Hu L L,Zheng X D,Duan Y T,Yan X F,Hu Y,Zhang X L. 2019. First-arrival picking with a U-net convolutional network[J]. <italic>Geophysics</italic>,<bold>84</bold>(6):1–58. doi: 10.1190/geo2019-1029-tiogeo.1
|
Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift[Z]. arXiv preprint. arXiv: 1502.03167.
|
LeCun Y,Bottou L,Bengio Y,Haffner P. 1998. Gradient-based learning applied to document recognition[J]. <italic>Proc IEEE</italic>,<bold>86</bold>(11):2278–2324. doi: 10.1109/5.726791
|
Maass W. 1997. Networks of spiking neurons:The third generation of neural network models[J]. <italic>Neu Networks</italic>,<bold>10</bold>(9):1659–1671. doi: 10.1016/S0893-6080(97)00011-7
|
Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer: 234–241.
|
Ross Z E,Meier M A,Hauksson E. 2018. P wave arrival picking and first‐motion polarity determination with deep learning[J]. <italic>J Geophys Res</italic>:<italic>Solid Earth</italic>,<bold>123</bold>(6):5120–5129. doi: 10.1029/2017JB015251
|
Rumelhart D E,Hinton G E,Williams R J. 1986. Learning representations by back-propagating errors[J]. <italic>Nature</italic>,<bold>323</bold>(6088):533–536. doi: 10.1038/323533a0
|
Sandler M, Howard A, Zhu M L, Zhmoginov A, Chen L C. 2018. MobileNetV2: Inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE: 4510–4520.
|
Schuster M,Paliwal K K. 1997. Bidirectional recurrent neural networks[J]. <italic>IEEE Trans Signal Process</italic>,<bold>45</bold>(11):2673–2681. doi: 10.1109/78.650093
|
van der Baan M,Jutten C. 2000. Neural networks in geophysical applications[J]. <italic>Geophysics</italic>,<bold>65</bold>(4):1032–1047. doi: 10.1190/1.1444797
|
van den Oord A, Dieleman S, Zen H G, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K. 2016. WaveNet: A generative model for raw audio[Z]. arXiv preprint. arXiv: 1609.03499.
|
Zeiler M D, Krishnan D, Taylor G W, Fergus R. 2010. Deconvolutional networks[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE: 2528–2535.
|
Zhang K P,Zhang Z P,Li Z F,Qiao Y. 2016. Joint face detection and alignment using multitask cascaded convolutional networks[J]. <italic>IEEE Signal Process Lett</italic>,<bold>23</bold>(10):1499–1503. doi: 10.1109/LSP.2016.2603342
|
Zhao Y,Takano K. 1999. An artificial neural network approach for broadband seismic phase picking[J]. <italic>Bull Seismol Soc Am</italic>,<bold>89</bold>(3):670–680.
|
Zhou Y J,Yue H,Kong Q K,Zhou S Y. 2019. Hybrid event detection and phase‐picking algorithm using convolutional and recurrent neural networks[J]. <italic>Seismol Res Lett</italic>,<bold>90</bold>(3):1079–1087. doi: 10.1785/0220180319
|
Zhu W Q,Beroza G C. 2018. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. <italic>Geophys J Int</italic>,<bold>216</bold>(1):261–273.
|
1. |
申中寅,吴庆举. 卷积神经网络在远-近地震震相拾取中的应用及模型解释. 地震学报. 2022(06): 961-979 .
![]() | |
2. |
廖诗荣,张红才,范莉苹,李珀任,黄玲珠,房立华,秦敏. 实时智能地震处理系统研发及其在2021年云南漾濞M_S6.4地震中的应用. 地球物理学报. 2021(10): 3632-3645 .
![]() | |
3. |
Ziye Yu,Risheng Chu,Weitao Wang,Minhan Sheng. CRPN: A cascaded classification and regression DNN framework for seismic phase picking. Earthquake Science. 2020(02): 53-61 .
![]() |