Wang T,Xue M. 2020. Orientation variations of the seismometers in the Aleutian Islands and their impacts on shear wave splitting analyses. Acta Seismologica Sinica42(2):187−195. doi:10.11939/jass.20190081. DOI: 10.11939/jass.20190081
Citation: Wang T,Xue M. 2020. Orientation variations of the seismometers in the Aleutian Islands and their impacts on shear wave splitting analyses. Acta Seismologica Sinica42(2):187−195. doi:10.11939/jass.20190081. DOI: 10.11939/jass.20190081

Orientation variations of the seismometers in the Aleutian Islands and their impacts on shear wave splitting analyses

More Information
  • Received Date: April 28, 2019
  • Revised Date: December 11, 2019
  • Available Online: May 11, 2020
  • Rayleigh wave polarization analysis is adopted to calculate the seismometer orientations of 59 seismic stations in the Aleutian Islands including networks AK, AT, AV, IM, TA, and XJ. For most stations, the orientations deviate slightly from the geographical north pole while a few stations show strikingly large misorientations. The misorientations can be caused by many anthropogenic factors, such as the re-orientation after the deployment or the installation of new instruments, which leads to the variations of seismometer orientations during the station operation period. The orientations of the seismometer plays a significant role in seismology studies. For example, if the deviation of the orientation from the geographical north pole is large, it will affect the obtained values of fast orientations of splitting shear waves. Therefore the orientation of the stations need to be corrected for the seismic data by time interval.

  • 张正伟,杨洪刚. 2016. 西昌台网地震仪方位角校正[J]. 华南地震,36(2):96–100.
    Zhang Z W,Yang H G. 2016. Seismograph azimuth correction for Xichang Seismic Network[J]. South China Journal of Seismology,36(2):96–100 (in Chinese).
    Chanel E. 1997. An automated Rayleigh-wave detection algorithm[J]. Bull Seismol Soc Am, 87(1): 157–163.
    Ekström G,Busby R W. 2008. Measurements of seismometer orientation at USArray transportable array and backbone stations[J]. Seismol Res Lett,79(4):554–561. doi: 10.1785/gssrl.79.4.554
    Eli Baker G,Stevens J L. 2004. Backazimuth estimation reliability using surface wave polarization[J]. Geophys Res Lett,31(9):L09611.
    Hanna J,Long M D. 2012. SKS splitting beneath Alaska:Regional variability and implications for subduction processes at a slab edge[J]. Tectonophysics,530/531:272–285. doi: 10.1016/j.tecto.2012.01.003
    Niu F L,Li J. 2011. Component azimuths of the CEArray stations estimated from P-wave particle motion[J]. Earthquake Science,24(1):3–13. doi: 10.1007/s11589-011-0764-8
    Schulte-Pelkum V,Masters G,Shearer P M. 2001. Upper mantle anisotropy from long-period P polarization[J]. J Geophys Res,106(B10):21917–21934. doi: 10.1029/2001JB000346
    Selby N D. 2001. Association of Rayleigh waves using backazimuth measurements:Application to test ban verification[J]. Bull Seismol Soc Am,91(3):580–593. doi: 10.1785/0120000068
    Silver P G,Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation[J]. J Geophys Res,96(B10):16429–16454. doi: 10.1029/91JB00899
    Stachnik J C,Sheehan A F,Zietlow D W,Yang Z,Collins J,Ferris A. 2012. Determination of New Zealand ocean bottom seismometer orientation via Rayleigh-wave polarization[J]. Seismol Res Lett,83(4):704–713. doi: 10.1785/0220110128
    Zha Y,Webb S C,Menke W. 2013. Determining the orientations of ocean bottom seismometers using ambient noise correlation[J]. Geophys Res Lett,40(14):3585–3590. doi: 10.1002/grl.50698
  • Related Articles

Catalog

    Article views (1191) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return