Liu Chao, Lei Qiyun, Yu Sihan, Yang Shun, Wang Yin. 2021: Using UAV photogrammetry technology to extract the quantitative parameters of earthquake surface rupture zone:A case study of the southern Zhongwei M7½ earthquake in 1709. Acta Seismologica Sinica, 43(1): 113-123. DOI: 10.11939/jass.20200039
Citation: Liu Chao, Lei Qiyun, Yu Sihan, Yang Shun, Wang Yin. 2021: Using UAV photogrammetry technology to extract the quantitative parameters of earthquake surface rupture zone:A case study of the southern Zhongwei M7½ earthquake in 1709. Acta Seismologica Sinica, 43(1): 113-123. DOI: 10.11939/jass.20200039

Using UAV photogrammetry technology to extract the quantitative parameters of earthquake surface rupture zone:A case study of the southern Zhongwei M7½ earthquake in 1709

More Information
  • Received Date: March 20, 2020
  • Revised Date: June 07, 2020
  • Available Online: February 25, 2021
  • Published Date: January 14, 2021
  • This paper firstly introduces the operation flow for obtaining digital elevation model (DEM) and geomorphic data (digital orthophoto map) by unmanned aerial vehicle (UAV)photogrammetry technology, and compares and analyzes the differences in horizontal position and elevation of DEM generated by three kinds of dense point clouds with different masses. Then, the vertical and horizontal displacements of seismic faults on the main surface rupture zone of the south of Zhongwei M7½ earthquake in 1709 were extracted. The results showed that, as for the DEM generated by dense point cloud of high quality, its resolution was in centimeters, and the processing time was not too long. Compared with DEM generated from the other two kinds of dense point clouds, the difference in horizontal position and elevation is less than 0.100 m. Based on high quality dense point cloud we can generate the DEMs with resolution of 6.33 cm/pix, extract the vertical dislocation of the fault on the surface rupture of 1709 earthquake as long as (0.704±0.293) m, horizontal displacement of 5.1 m, which was consistent with previous studies and therfore represented the co-seismic slip of the 1709 earthquake. This suggests that by the UAV photogrammetry technology we can obtain high resolution topography data of typical sites on the earthquake surface rupture zone, and seismic fault quantitative parameters can be further extracted based on the generated DEM.
  • 艾明,毕海芸,郑文俊,尹金辉,袁道阳,任治坤,陈干,刘金瑞. 2018. 利用无人机摄影测量技术提取活动构造定量参数[J]. 地震地质,40(6):1276–1293.
    Ai M,Bi H Y,Zheng W J,Yin J H,Yuan D Y,Ren Z K,Chen G,Liu J R. 2018. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameters of active tectonics[J]. Seismology and Geology,40(6):1276–1293 (in Chinese).
    毕海芸,郑文俊,曾江源,俞晶星,任治坤. 2017. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质,39(4):656–674. doi: 10.3969/j.issn.0253-4967.2017.04.003
    Bi H Y,Zheng W J,Zeng J Y,Yu J X,Ren Z K. 2017. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology,39(4):656–674 (in Chinese).
    邓起东,闻学泽. 2008. 活动构造研究:历史、进展与建议[J]. 地震地质,30(1):1–30. doi: 10.3969/j.issn.0253-4967.2008.01.002
    Deng Q D,Wen X Z. 2008. A review on the research of active tectonics:History,progress and suggestions[J]. Seismology and Geology,30(1):1–30 (in Chinese).
    高伟,何宏林,邹俊杰,石峰. 2017. 三维图像建模在古地震探槽研究中的应用[J]. 地震地质,39(1):172–182. doi: 10.3969/j.issn.0253-4967.2017.01.013
    Gao W,He H L,Zou J J,Shi F. 2017. The application of image-based modeling in paleoearthquake trench study[J]. Seismology and Geology,39(1):172–182 (in Chinese).
    荆帅军,帅向华,甄盟. 2019. 基于无人机倾斜影像的三维建筑物震害精细信息提取[J]. 地震学报,41(3):366–376.
    Jing S J,Shuai X H,Zhen M. 2019. Fine information extraction of 3D building seismic damage based on unmanned aerial vehicle oblique images[J]. Acta Seismologica Sinica,41(3):366–376 (in Chinese).
    李金香,常想德,姚远,李亚芳,张治广. 2019. 无人机技术在新疆塔县地震的应用及实现[J]. 华南地震,39(3):57–64.
    Li J X,Chang X D,Yao Y,Li Y F,Zhang Z G. 2019. Application and realization of UAV technology in the earthquake of Tajik autonomous county of Taxkorgan,Xinjiang[J]. South China Journal of Seismology,39(3):57–64 (in Chinese).
    李云,徐伟,吴玮. 2011. 灾害监测无人机技术应用与研究[J]. 灾害学,26(1):138–143. doi: 10.3969/j.issn.1000-811X.2011.01.026
    Li Y,Xu W,Wu W. 2011. Application research on aviation remote sensing UAV for disaster monitoring[J]. Journal of Catastrophology,26(1):138–143 (in Chinese).
    刘静,陈涛,张培震,张会平,郑文俊,任治坤,梁诗明,盛传贞,甘卫军. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报,58(1):41–45.
    Liu J,Chen T,Zhang P Z,Zhang H P,Zheng W J,Ren Z K,Liang S M,Sheng C Z,Gan W J. 2013. Illuminating the active Haiyuan fault,China by airborne light detection and ranging[J]. Chinese Science Bulletin,58(1):41–45 (in Chinese). doi: 10.1360/972012-1526
    陆博迪,孟迪文,陆鸣,赵京轶,谢周敏,杨建军. 2011. 无人机在重大自然灾害中的应用与探讨[J]. 灾害学,26(4):122–126. doi: 10.3969/j.issn.1000-811X.2011.04.024
    Lu B D,Meng D W,Lu M,Zhao J Y,Xie Z M,Yang J J. 2011. Application and exploration of unmanned aerial vehicle in major natural disasters[J]. Journal of Catastrophology,26(4):122–126 (in Chinese).
    闵伟,张培震,邓起东. 2001. 中卫—同心断裂带全新世古地震研究[J]. 地震地质,23(3):357–366. doi: 10.3969/j.issn.0253-4967.2001.03.003
    Min W,Zhang P Z,Deng Q D. 2001. The study of Holocene paleoearthquakes on Zhongwei-Tongxin fault zone[J]. Seismology and Geology,23(3):357–366 (in Chinese).
    孙稳,何宏林,魏占玉,高伟,孙浩越,邹俊杰. 2019. 基于无人机航测获取高分辨率DEM数据的断层几何结构精细解译与分析:以海原断裂唐家坡为例[J]. 地震地质,41(6):1350–1365. doi: 10.3969/j.issn.0253-4967.2019.06.003
    Sun W,He H L,Wei Z Y,Gao W,Sun H Y,Zou J J. 2019. Interpretation and analysis of the fine fault geometry based on high-resolution DEM data derived from UAV photogrammetric technique:A case study of Tangjiapo site on the Haiyuan fault[J]. Seismology and Geology,41(6):1350–1365 (in Chinese).
    铁瑞,王俊,贾连军,郭明珠. 2016. 强震地震数据统计及其地表破裂特性研究[J]. 世界地震工程,32(1):112–116.
    Tie R,Wang J,Jia L J,Guo M Z. 2016. Data statistics of strong-moderate earthquake and characteristics research of ground rupture[J]. World Earthquake Engineering,32(1):112–116 (in Chinese).
    汪一鹏,宋方敏,李志义,尤惠川,安平. 1990. 宁夏香山—天景山断裂带晚第四纪强震重复间隔的研究[J]. 中国地震,6(2):15–24.
    Wang Y P,Song F M,Li Z Y,You H C,An P. 1990. Study on recurrence intervals of great earthquakes in the Late Quaternary of Xiangshan-Tianjingshan fault zone in Ningxia[J]. Earthquake Research in China,6(2):15–24 (in Chinese).
    魏占玉,Ramon A,何宏林,高伟. 2015. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质,37(2):636–648. doi: 10.3969/j.issn.0253-4967.2015.02.024
    Wei Z Y,Ramon A,He H L,Gao W. 2015. Accuracy analysis of terrain point cloud acquired by “Structure from Motion” using aerial photos[J]. Seismology and Geology,37(2):636–648 (in Chinese).
    张维歧,焦德成,柴炽章,宋方敏,汪一鹏. 1988. 宁夏香山—天景山弧形断裂带新活动特征及1709年中卫南7½级地震形变带[J]. 地震地质,10(3):12–20.
    Zhang W Q,Jiao D C,Chai C Z,Song F M,Wang Y P. 1988. Neotectonic features of the Xiangshan-Tianjingshan arc fracture zone and the seismic deformation zone of 1709 south of Zhongwei M=7½ earthquake[J]. Seismology and Geology,10(3):12–20 (in Chinese).
    张维歧, 焦德成, 柴炽章, 王增光, 闵伟, 廖玉华. 2015. 天景山活动断裂带[M]. 北京: 地震出版社: 167–214.
    Zhang W Q, Jiao D C, Chai C Z, Wang Z G, Min W, Liao Y H. 2015. Active Fault Zone of Tianjingshan[M]. Beijing: Seismological Press: 167–214 (in Chinese).
    周俊喜,刘百箎. 1987. 中卫—同心活断层研究[J]. 西北地震学报,9(3):71–77.
    Zhou J X,Liu B C. 1987. The research of active Zhongwei-Tongxin fault[J]. Northwestern Seismological Journal,9(3):71–77 (in Chinese).
    Angster S,Wesnousky S,Huang W L,Kent G,Nakata T,Goto H. 2016. Application of UAV photography to refining the slip rate on the Pyramid Lake fault zone,Nevada[J]. Bull Seismol Soc Am,106(2):785–798. doi: 10.1785/0120150144
    Bemis S P,Micklethwaite S,Turner D,James M R,Akciz S,Thiele S T,Bangash H A. 2014. Ground-based and UAV-based photogrammetry:A multi-scale,high-resolution mapping tool for structural geology and paleoseismology[J]. J Struct Geol,69:163–178. doi: 10.1016/j.jsg.2014.10.007
    Fonstad M A,Dietrich J T,Courville B C,Jensen J L,Carbonneau P E. 2013. Topographic structure from motion:A new development in photogrammetric measurement[J]. Earth Surf Proce Landforms,38(4):421–430. doi: 10.1002/esp.3366
    Harwin S,Lucieer A. 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery[J]. Remote Sensing,4(6):1573–1599. doi: 10.3390/rs4061573
    James M R,Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. J Geophys Res Atmos,117(F3):F03017.
    Johnson K,Nissen E,Saripalli S,Arrowsmith J R,McGarey P,Scharer K,Williams P,Blisniuk K. 2014. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere,10(5):969–986. doi: 10.1130/GES01017.1
    Klinger Y,Etchebes M,Tapponnier P,Narteau C. 2011. Characteristic slip for five great earthquakes along the Fuyun fault in China[J]. Nat Geosci,4(6):389–392. doi: 10.1038/ngeo1158
    Lin Z,Kaneda H,Mukoyama S,Asada N,Chiba T. 2013. Detection of subtle tectonic-geomorphic features in densely forested mountains by very high-resolution airborne LiDAR survey[J]. Geomorphology,182:104–115. doi: 10.1016/j.geomorph.2012.11.001
    Lucieer A,de Jong S M,Turner D. 2014. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography[J]. Progr Phys Geogr Earth Environ,38(1):97–116. doi: 10.1177/0309133313515293
    Oskin M E,Arrowsmith J R,Corona A H,Elliott A J,Fletcher J M,Fielding E J,Gold P O,Garcia-Garcia J J,Hudnut K W,Zeng J L,Teran O J. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR[J]. Science,335(6069):702–705. doi: 10.1126/science.1213778
    Ren Z K,Zhang Z Q,Chen T,Yan S L,Yin J H,Zhang P Z,Zheng W J,Zhang H P,Li C Y. 2015. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. GSA Bull,128(1/2):3–18.
    Snavely N,Seitz S M,Szeliski R. 2008. Modeling the world from internet photo collections[J]. Int J Computer Vision,80(2):189–210. doi: 10.1007/s11263-007-0107-3
    Zhou Y,Parsons B,Elliott J R,Barisin I,Walker R T. 2015. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes:A case study for the El Mayor-Cucapah epicentral area[J]. J Geophys Res:Solid Earth,120(12):8793–8808. doi: 10.1002/2015JB012358
  • Related Articles

  • Cited by

    Periodical cited type(6)

    1. 王雅如,王昀,江勇勇. 基于改进Unet的地震勘探工区建筑物分割方法研究. 现代电子技术. 2025(03): 135-140 .
    2. 齐文文,许冲,乔月霞. 基于谷歌地球引擎和Sentinel-2时序数据的海地多云地区地震滑坡识别. 地震学报. 2024(04): 633-648 . 本站查看
    3. 韩军良,韩留生,穆豪祥,张至一,郭宇晨,刘晓亚. 面向对象的土地荒漠化信息提取研究. 测绘科学. 2023(04): 149-160 .
    4. 罗嘉琦,帅向华,李继赓. 基于深度学习的倾斜摄影建筑物表面损毁信息提取. 中国地震. 2023(02): 271-281 .
    5. 雷雅婷,沈占锋,许泽宇,王浩宇,李硕,焦淑慧. 基于D-LinkNet的2014年云南鲁甸M_S6.5地震建筑物损毁与重建评估. 地震研究. 2022(04): 608-616 .
    6. 杜浩国,张方浩,卢永坤,林旭川,邓树荣,曹彦波. 基于多源遥感影像的2021年云南漾濞M_S6.4地震灾区建筑物信息识别与震害分析. 地震研究. 2021(03): 490-498 .

    Other cited types(4)

Catalog

    Article views (988) PDF downloads (67) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return