Citation: | Cheng Wenkai, Du Jinsong, Chen Chao, Yisimayili Aisa. 2021: Reconstruction method for diurnal variations ofthe geomagnetic field by XGBoost machine learning. Acta Seismologica Sinica, 43(1): 100-112. DOI: 10.11939/jass.20200046 |
安振昌. 1999. 1950—2000年中国地磁测量地磁图与地磁研究[J]. 地球物理学进展,14(4):75–88.
|
An Z C. 1999. Geomagnetic surveys and geomagnetic charts and geomagnetic studies in China for 1950−2000[J]. Progress in Geophysics,14(4):75–88 (in Chinese).
|
安振昌,彭丰林,刘少华,王广福. 2014. 1683—1949年中国地磁测量、地磁图和地磁模型的总考评与研究[J]. 地球物理学报,57(11):3795–3803.
|
An Z C,Peng F L,Liu S H,Wang G F. 2014. Inspection and study on the geomagnetic survey, charts and models during 1683−1949 in China[J]. Chinese Journal of Geophysics,57(11):3795–3803 (in Chinese).
|
边刚,刘雁春,卞光浪,于波. 2009. 海洋磁力测量中多站地磁日变改正值计算方法研究[J]. 地球物理学报,52(10):2613–2618.
|
Bian G,Liu Y C,Bian G L,Yu B. 2009. Research on computation method of multi-station diurnal variation correction in marine magnetic surveys[J]. Chinese Journal of Geophysics,52(10):2613–2618 (in Chinese).
|
卞光浪,刘雁春,翟国君,边刚,于波. 2010. 基于纬差加权法的海洋磁力测量多站地磁日变改正值计算[J]. 测绘科学,35(3):118–120.
|
Bian G L,Liu Y C,Zhai G J,Bian G,Yu B. 2010. Diurnal geomagnetic correction with multi-observatories in marine magnetic surveying[J]. Science of Surveying and Mapping,35(3):118–120 (in Chinese).
|
冯志生,梅卫萍,张苏平,杜斌,居海华,杨从杰,张秀霞. 2005. FHD磁力仪Z分量分钟值日变化空间相关性的初步应用[J]. 华南地震,25(3):1–7.
|
Feng Z S,Mei W P,Zhang S P,Du B,Ju H H,Yang C J,Zhang X X. 2005. Preliminary application of the daily-variation spatial correlation method of vertical component’s minutely value of FHD magnetometer[J]. South China Journal of Seismology,25(3):1–7 (in Chinese).
|
管志宁. 2005. 地磁场与磁力勘探[M]. 北京: 地质出版社: 257–294.
|
Guan Z N. 2005. Geomagnetic Field and Magnetic Exploration[M]. Beijing: Geological Publishing House: 257–294 (in Chinese).
|
郭建华,薛典军. 1999. 多台站磁日变校正方法研究及应用[J]. 地球学报,20(增刊):932–937.
|
Guo J H,Xue D J. 1999. The application and method research of magnetic diurnal calibration based on multi-station[J]. Acta Geoscientia Sinica,20(S):932–937 (in Chinese).
|
李超,张文辉,林基明. 2019. 基于XGBoost算法的恒星/星系分类研究[J]. 天文学报,60(2):71–80.
|
Li C,Zhang W H,Lin J M. 2019. Research on star/galaxy classification based on XGBoost algorithm[J]. Acta Astronomica Sinica,60(2):71–80 (in Chinese).
|
潘星辰,姚长利,郑元满,石磊,张素琴. 2020. 海洋磁测日变校正的纬度改正方法研究[J]. 地球物理学报,63(8):3025–3026.
|
Pan X C,Yao C L,Zheng Y M,Shi L,Zhang S Q. 2020. Study on latitude correction method of diurnal variation correction for marine magnetic survey[J]. Chinese Journal of Geophysics,63(8):3025–3026 (in Chinese).
|
单汝俭,金国,曾志成. 1990. 局部地区地磁日变及拟合方法研究[J]. 长春地质学院学报,20(3):315–322.
|
Shan R J,Jin G,Zeng Z C. 1990. Study on geomagnetic diurnal variation and its fitting methods in local area[J]. Journal of Changchun University of Earth Science,20(3):315–322 (in Chinese).
|
吴琼,余文铖,洪海生,喻蕾,段炼,尚明远,刘哲. 2020. 基于XGBoost算法的配网台区低压跳闸概率预测[J]. 中国电力,53(4):105–113.
|
Wu Q,Yu W C,Hong H S,Yu L,Duan L,Shang M Y,Liu Z. 2020. Probability prediction of low-voltage tripping failures in distribution transformer station areas based on XGBoost algorithm[J]. Electric Power,53(4):105–113 (in Chinese).
|
吴双,石宇强. 2019. 基于BP网络与XGBoost的质量控制方法研究[J]. 制造业自动化,41(12):12–17.
|
Wu S,Shi Y Q. 2019. Research on quality control method based on BP network and XGBoost[J]. Manufacturing Automation,41(12):12–17 (in Chinese).
|
徐文耀. 2003. 地磁学[M]. 北京: 地震出版社: 1–45.
|
Xu W Y. 2003. Geomagnetism[M]. Beijing: Seismological Press: 1–45 (in Chinese).
|
徐行,廖开训,陈邦彦,王建革. 2007. 多台站地磁日变观测数据对远海磁测精度的影响分析[J]. 海洋测绘,27(1):38–40.
|
Xu X,Liao K X,Chen B Y,Wang J G. 2007. The effect analysis of the observed diurnal magnetic variation from multi-stations on the accuracy of marine magnetic survey[J]. Hydrographic Surveying and Charting,27(1):38–40 (in Chinese).
|
姚法章. 1988. 订正法在地磁绝对观测中的应用[J]. 地震地磁观测与研究,(6):35–38.
|
Yao F Z. 1988. The application of correction method in geomagnetic absolute observation[J]. Seismological and Geomagnetic Observation and Research,(6):35–38 (in Chinese).
|
姚休义. 2015. 地磁台站观测异常识别与数据重构技术研究[D]. 北京: 中国地震局地球物理研究所: 88–99.
|
Yao X Y. 2015. Method of Artificial Electromagnetic Disturbances Identification and Data Reconstruction[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 88–99 (in Chinese).
|
姚休义,滕云田,杨冬梅,姚远,陈俊. 2016. 地磁观测数据重构技术研究[J]. 地震学报,38(6):878–888.
|
Yao X Y,Teng Y T,Yang D M,Yao Y,Chen J. 2016. On reconstruction technique of geomagnetic observation data[J]. Acta Seismologica Sinica,38(6):878–888 (in Chinese).
|
姚休义,滕云田,杨冬梅,姚远. 2018. 基于神经网络的地磁观测数据重构研究[J]. 地球物理学报,61(6):2358–2368.
|
Yao X Y,Teng Y T,Yang D M,Yao Y. 2018. Reconstruction of geomagnetic data based on artificial neural network[J]. Chinese Journal of Geophysics,61(6):2358–2368 (in Chinese).
|
张向宇,关永贤,张锡林. 2016. 回归分析法在日变数据推算中的应用[J]. 物探与化探,40(3):603–608.
|
Zhang X Y,Guan Y X,Zhang X L. 2016. The application of regression to estimating geomagnetic data[J]. Geophysical and Geochemical Exploration,40(3):603–608 (in Chinese).
|
朱兆才. 1989. 空间相关性分析在地磁观测研究中的应用[J]. 地震地磁观测与研究,(5):44–49.
|
Zhu Z C. 1989. Spatial correlation analysis in the application of the geomagnetic observational studies[J]. Seismological and Geomagnetic Observation and Research,(5):44–49 (in Chinese).
|
Bergen K J,Johnson P A,de Hoop M V,Beroza G C. 2019. Machine learning for data-driven discovery in solid earth geoscience[J]. Science,363(6433):1–10. doi: 10.1126/science.aau0323
|
Chen T Q, Guestrin C. 2016. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery: 785.
|
Friedman J H. 2001. Greedy function approximation:A gradient boosting machine[J]. Ann Stat,29(5):1189–1232.
|
Hajian A, Styles P. 2018. Application of Soft Computing and Intelligent Methods in Geophysics[M]. Switzerland: Springer International Publishing: 3–193.
|
Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc: 1137–1143.
|
Pelikan M,Sastry K,Goldberg D E. 2002. Scalability of the Bayesian optimization algorithm[J]. Int J Approxim Reason,31(3):221–258. doi: 10.1016/S0888-613X(02)00095-6
|
Xia Y F,Liu C Z,Li Y Y,Liu N N. 2017. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Exp Syst Appl,78:225–241. doi: 10.1016/j.eswa.2017.02.017
|