Cheng Wenkai, Du Jinsong, Chen Chao, Yisimayili Aisa. 2021: Reconstruction method for diurnal variations ofthe geomagnetic field by XGBoost machine learning. Acta Seismologica Sinica, 43(1): 100-112. DOI: 10.11939/jass.20200046
Citation: Cheng Wenkai, Du Jinsong, Chen Chao, Yisimayili Aisa. 2021: Reconstruction method for diurnal variations ofthe geomagnetic field by XGBoost machine learning. Acta Seismologica Sinica, 43(1): 100-112. DOI: 10.11939/jass.20200046

Reconstruction method for diurnal variations ofthe geomagnetic field by XGBoost machine learning

More Information
  • Received Date: March 30, 2020
  • Revised Date: June 16, 2020
  • Available Online: March 19, 2021
  • Published Date: January 14, 2021
  • The long-term observation data of the geomagnetic field based on the geomagnetic stations (networks) are of great value for studying the spatio-temporal variation rules, characteristics, also and the field source information of the geomagnetic field. However, due to infrastructure and human activities (such as high-speed rail, highways, power grids, etc) as well as sudden instrument failures, there are interferences and missing observation data in some time periods for some observation stations. Therefore, this paper utilizes the XGBoost machine learning method to reconstruct the observation data of some stations with severe interference and missing data based on the high-quality observation data of existing stations in their surrounding areas. The results of simulation experiments show that the reconstruction residuals of geomagnetic field components are lower than 0.1 nT whether in magnetically quiet days or in disturbed days. Further comparative analysis of the experimental statistics and residual curve illustrates that the reconstruction accuracy mainly depends on the geomagnetic activity and the time-variable complexity of the signals to be reconstructed, and in addition the reconstruction accuracy by XGBoost method is higher than that by the BP neural network. This research suggests that, the reconstruction method by XGBoost machine learning has an advantage in dealing with nonlinear complex signals, and thus can be effectively applied to reconstruct the observation data of some stations with severe interference and missing data.
  • 安振昌. 1999. 1950—2000年中国地磁测量地磁图与地磁研究[J]. 地球物理学进展,14(4):75–88.
    An Z C. 1999. Geomagnetic surveys and geomagnetic charts and geomagnetic studies in China for 1950−2000[J]. Progress in Geophysics,14(4):75–88 (in Chinese).
    安振昌,彭丰林,刘少华,王广福. 2014. 1683—1949年中国地磁测量、地磁图和地磁模型的总考评与研究[J]. 地球物理学报,57(11):3795–3803.
    An Z C,Peng F L,Liu S H,Wang G F. 2014. Inspection and study on the geomagnetic survey, charts and models during 1683−1949 in China[J]. Chinese Journal of Geophysics,57(11):3795–3803 (in Chinese).
    边刚,刘雁春,卞光浪,于波. 2009. 海洋磁力测量中多站地磁日变改正值计算方法研究[J]. 地球物理学报,52(10):2613–2618.
    Bian G,Liu Y C,Bian G L,Yu B. 2009. Research on computation method of multi-station diurnal variation correction in marine magnetic surveys[J]. Chinese Journal of Geophysics,52(10):2613–2618 (in Chinese).
    卞光浪,刘雁春,翟国君,边刚,于波. 2010. 基于纬差加权法的海洋磁力测量多站地磁日变改正值计算[J]. 测绘科学,35(3):118–120.
    Bian G L,Liu Y C,Zhai G J,Bian G,Yu B. 2010. Diurnal geomagnetic correction with multi-observatories in marine magnetic surveying[J]. Science of Surveying and Mapping,35(3):118–120 (in Chinese).
    冯志生,梅卫萍,张苏平,杜斌,居海华,杨从杰,张秀霞. 2005. FHD磁力仪Z分量分钟值日变化空间相关性的初步应用[J]. 华南地震,25(3):1–7.
    Feng Z S,Mei W P,Zhang S P,Du B,Ju H H,Yang C J,Zhang X X. 2005. Preliminary application of the daily-variation spatial correlation method of vertical component’s minutely value of FHD magnetometer[J]. South China Journal of Seismology,25(3):1–7 (in Chinese).
    管志宁. 2005. 地磁场与磁力勘探[M]. 北京: 地质出版社: 257–294.
    Guan Z N. 2005. Geomagnetic Field and Magnetic Exploration[M]. Beijing: Geological Publishing House: 257–294 (in Chinese).
    郭建华,薛典军. 1999. 多台站磁日变校正方法研究及应用[J]. 地球学报,20(增刊):932–937.
    Guo J H,Xue D J. 1999. The application and method research of magnetic diurnal calibration based on multi-station[J]. Acta Geoscientia Sinica,20(S):932–937 (in Chinese).
    李超,张文辉,林基明. 2019. 基于XGBoost算法的恒星/星系分类研究[J]. 天文学报,60(2):71–80.
    Li C,Zhang W H,Lin J M. 2019. Research on star/galaxy classification based on XGBoost algorithm[J]. Acta Astronomica Sinica,60(2):71–80 (in Chinese).
    潘星辰,姚长利,郑元满,石磊,张素琴. 2020. 海洋磁测日变校正的纬度改正方法研究[J]. 地球物理学报,63(8):3025–3026.
    Pan X C,Yao C L,Zheng Y M,Shi L,Zhang S Q. 2020. Study on latitude correction method of diurnal variation correction for marine magnetic survey[J]. Chinese Journal of Geophysics,63(8):3025–3026 (in Chinese).
    单汝俭,金国,曾志成. 1990. 局部地区地磁日变及拟合方法研究[J]. 长春地质学院学报,20(3):315–322.
    Shan R J,Jin G,Zeng Z C. 1990. Study on geomagnetic diurnal variation and its fitting methods in local area[J]. Journal of Changchun University of Earth Science,20(3):315–322 (in Chinese).
    吴琼,余文铖,洪海生,喻蕾,段炼,尚明远,刘哲. 2020. 基于XGBoost算法的配网台区低压跳闸概率预测[J]. 中国电力,53(4):105–113.
    Wu Q,Yu W C,Hong H S,Yu L,Duan L,Shang M Y,Liu Z. 2020. Probability prediction of low-voltage tripping failures in distribution transformer station areas based on XGBoost algorithm[J]. Electric Power,53(4):105–113 (in Chinese).
    吴双,石宇强. 2019. 基于BP网络与XGBoost的质量控制方法研究[J]. 制造业自动化,41(12):12–17.
    Wu S,Shi Y Q. 2019. Research on quality control method based on BP network and XGBoost[J]. Manufacturing Automation,41(12):12–17 (in Chinese).
    徐文耀. 2003. 地磁学[M]. 北京: 地震出版社: 1–45.
    Xu W Y. 2003. Geomagnetism[M]. Beijing: Seismological Press: 1–45 (in Chinese).
    徐行,廖开训,陈邦彦,王建革. 2007. 多台站地磁日变观测数据对远海磁测精度的影响分析[J]. 海洋测绘,27(1):38–40.
    Xu X,Liao K X,Chen B Y,Wang J G. 2007. The effect analysis of the observed diurnal magnetic variation from multi-stations on the accuracy of marine magnetic survey[J]. Hydrographic Surveying and Charting,27(1):38–40 (in Chinese).
    姚法章. 1988. 订正法在地磁绝对观测中的应用[J]. 地震地磁观测与研究,(6):35–38.
    Yao F Z. 1988. The application of correction method in geomagnetic absolute observation[J]. Seismological and Geomagnetic Observation and Research,(6):35–38 (in Chinese).
    姚休义. 2015. 地磁台站观测异常识别与数据重构技术研究[D]. 北京: 中国地震局地球物理研究所: 88–99.
    Yao X Y. 2015. Method of Artificial Electromagnetic Disturbances Identification and Data Reconstruction[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 88–99 (in Chinese).
    姚休义,滕云田,杨冬梅,姚远,陈俊. 2016. 地磁观测数据重构技术研究[J]. 地震学报,38(6):878–888.
    Yao X Y,Teng Y T,Yang D M,Yao Y,Chen J. 2016. On reconstruction technique of geomagnetic observation data[J]. Acta Seismologica Sinica,38(6):878–888 (in Chinese).
    姚休义,滕云田,杨冬梅,姚远. 2018. 基于神经网络的地磁观测数据重构研究[J]. 地球物理学报,61(6):2358–2368.
    Yao X Y,Teng Y T,Yang D M,Yao Y. 2018. Reconstruction of geomagnetic data based on artificial neural network[J]. Chinese Journal of Geophysics,61(6):2358–2368 (in Chinese).
    张向宇,关永贤,张锡林. 2016. 回归分析法在日变数据推算中的应用[J]. 物探与化探,40(3):603–608.
    Zhang X Y,Guan Y X,Zhang X L. 2016. The application of regression to estimating geomagnetic data[J]. Geophysical and Geochemical Exploration,40(3):603–608 (in Chinese).
    朱兆才. 1989. 空间相关性分析在地磁观测研究中的应用[J]. 地震地磁观测与研究,(5):44–49.
    Zhu Z C. 1989. Spatial correlation analysis in the application of the geomagnetic observational studies[J]. Seismological and Geomagnetic Observation and Research,(5):44–49 (in Chinese).
    Bergen K J,Johnson P A,de Hoop M V,Beroza G C. 2019. Machine learning for data-driven discovery in solid earth geoscience[J]. Science,363(6433):1–10. doi: 10.1126/science.aau0323
    Chen T Q, Guestrin C. 2016. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery: 785.
    Friedman J H. 2001. Greedy function approximation:A gradient boosting machine[J]. Ann Stat,29(5):1189–1232.
    Hajian A, Styles P. 2018. Application of Soft Computing and Intelligent Methods in Geophysics[M]. Switzerland: Springer International Publishing: 3–193.
    Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc: 1137–1143.
    Pelikan M,Sastry K,Goldberg D E. 2002. Scalability of the Bayesian optimization algorithm[J]. Int J Approxim Reason,31(3):221–258. doi: 10.1016/S0888-613X(02)00095-6
    Xia Y F,Liu C Z,Li Y Y,Liu N N. 2017. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Exp Syst Appl,78:225–241. doi: 10.1016/j.eswa.2017.02.017
  • Related Articles

  • Cited by

    Periodical cited type(11)

    1. 戴纳新,胡群,刘彦辉,周福霖,彭林欣. 基于核电厂规范反应谱的时-频人工波合成及楼层反应谱研究. 广西大学学报(自然科学版). 2025(01): 70-82 .
    2. 王伟,许晨夜. 上承式大跨度钢箱无铰拱桥地震响应分析. 黑龙江交通科技. 2024(09): 127-130+137 .
    3. 唐光武,于雯,谢皓宇,刘海明. 近场地震作用下桥梁结构动力响应研究进展. 公路交通技术. 2023(01): 60-68 .
    4. 杨兰兰,傅梓岳,王登峰,XIE Weichau. 基于数字滤波技术拟合规范反应谱的地震动研究. 振动与冲击. 2023(09): 57-67+105 .
    5. 张树翠,夏宏升,张欣刚,姚文莉,齐朝晖,刘大强. 一种内蕴基线漂移校正的人工地震波反应谱拟合方法. 地震工程学报. 2023(05): 1171-1178 .
    6. 杨连,林雄伟,王军. 超高层建筑中考虑相位随机性的基岩地震动时程分析. 粉煤灰综合利用. 2022(01): 39-43+49 .
    7. 高树飞,冯云芬. 基于Newmark滑块位移法的岸坡地震稳定性简易分析方法. 水运工程. 2022(06): 40-48 .
    8. 谢皓宇,潘飞,朱翊洲,郑万山,仉文岗. 核设备设计地震动包络标准PSD的拟合及试验研究. 土木与环境工程学报(中英文). 2021(03): 128-134 .
    9. 谢皓宇,朱翊洲,仉文岗,唐光武,谢永诚. 核电厂设备抗震设计标准功率谱密度的生成方法. 核动力工程. 2021(05): 128-133 .
    10. 别江波,刘星星,刘宏. 某机场高填方边坡的动力特性模拟分析. 工程建设. 2021(09): 13-18 .
    11. 杜迎乾,王之军,周承浩,许汉兵,贾书海. 人工地震波遗传优化生成方法. 工程抗震与加固改造. 2021(06): 149-156+95 .

    Other cited types(0)

Catalog

    Article views (889) PDF downloads (86) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return