Chen T,Yi Y Y. 2021. Random noise suppression of seismic data based on deep convolution neural network. Acta Seismologica Sinica43(4):474−482. DOI: 10.11939/jass.20200135
Citation: Chen T,Yi Y Y. 2021. Random noise suppression of seismic data based on deep convolution neural network. Acta Seismologica Sinica43(4):474−482. DOI: 10.11939/jass.20200135

Random noise suppression of seismic data based on deep convolution neural network

More Information
  • Received Date: August 06, 2020
  • Revised Date: November 18, 2020
  • Available Online: August 15, 2021
  • Published Date: July 14, 2021
  • Random noise suppression of seismic data is essential in seismic data processing. Since the seismic data recorded by the geophone is usually noisy, this kind of noisy data can be regarded as a manifestation of low signal-to-noise ratio. Low SNR data will affect subsequent processing of seismic data, such as migration and imaging. In this paper, we aim to improve the imaging quality of seismic data and propose an intelligent noise reduction framework for convolutional neural network to adaptively learn seismic signals from noisy seismic data. In order to speed up network training and avoid gradient disappearance during training, we add residual learning and batch normalization methods to the network, and use ReLU activation function and Adam optimization algorithm to optimize the network. In addition, the two datasets, Marmousi and F3, are used to train and test the network. A fully trained network can not only retain weak features in learning, but also remove random noise. First, fully train the network, extract random noise from it, and retain the learned seismic data features, and then estimate the waveform features in the test set by reconstructing the seismic data. The processing results of synthetic records and field data show the potential of deep convolutional neural network in random noise suppression tasks, and experimental verification shows that the deep convolutional neural network framework has a good denoising effect.
  • 韩卫雪,周亚同,池越. 2018. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探,57(6):862–869,877. doi: 10.3969/j.issn.1000-1441.2018.06.008
    Han W X,Zhou Y T,Chi Y. 2018. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Petroleum Geophysical Exploration,57(6):862–869,877 (in Chinese).
    刘婷婷,陈阳康. 2016. f-x域经验模式分解与多道奇异谱分析相结合去除随机噪声[J]. 石油物探,55(1):67–75. doi: 10.3969/j.issn.1000-1441.2016.01.009
    Liu T T,Chen Y K. 2016. Random noise attenuation based on EMD and MSSA in f-x domain[J]. Petroleum Geophysical Exploration,55(1):67–75 (in Chinese).
    王钰清,陆文凯,刘金林,张猛,苗永康. 2019. 基于数据增广和CNN的地震随机噪声压制[J]. 地球物理学报,62(1):427–439.
    Wang Y Q,Lu W K,Liu J L,Zhang M,Miao Y K. 2019. Random seismic noise attenuation based on data augmentation and CNN[J]. Chinese Journal of Geophysics,62(1):427–439 (in Chinese).
    Buades A,Coll B,Morel J M. 2005. A review of image denoising algorithms with a new one[J]. Multiscale Model Sm,4(2):490–530. doi: 10.1137/040616024
    Chen W,Chen Y K,Cheng Z X. 2017. Seismic time-frequency analysis using an improved empirical mode decomposition algorithm[J]. J Seism Explorat,26(4):367–380.
    Chen W,Bai M,Song H. 2019a. Seismic noise attenuation based on waveform classification[J]. J Appl Geophys,167:118–127. doi: 10.1016/j.jappgeo.2019.05.014
    Chen Y K,Chen W,Wang Y,Bai M. 2019b. Least-squares decomposition with time-space constraint for denoising microseismic data[J]. Geophys J Int,218(3):1702–1718. doi: 10.1093/gji/ggz145
    Chen Y K,Zu S H,Chen W,Zhang M,Guan Z. 2019c. Learning the blending spikes using sparse dictionaries[J]. Geophys J Int,218(2):1379–1397. doi: 10.1093/gji/ggz200
    Dabov K,Foi A,Katkovnik V. 2007. Image denoising by sparse 3D transform-domain collaborative ltering[J]. IEEE T Image Process,16(8):2082–2094.
    Duchi J,Hazan E,Singer Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res,12(7):2121–2159.
    He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern RecognitionCVPR). Las Vegas: IEEE: 770–778.
    Li P,Chen Z K,Yang L T,Gao J,Zhang Q C,Deen M J. 2017. Deep convolutional computation model for feature learning on big data in internet of things[J]. IEEE Trans Ind Inform,15(3):1341–1349.
    Liu J L,Lu W K,Zhang Y Q. 2017. Adaptive multiple subtraction based on sparse coding[J]. IEEE Trans Geosci Remote Sens,55(3):1318–1324. doi: 10.1109/TGRS.2016.2622399
    Ioffe S, Szegedy C. 2015. Batch normalization: Acceletating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille, France: PMLR: 448–456.
    Stumpf A,Lachiche N,Malet J P,Kerle N,Puissant A. 2014. Active learning in the spatial domain for remote sensing image classification[J]. IEEE Trans Geosci Remote Sens,52(5):2492–2507. doi: 10.1109/TGRS.2013.2262052
    Ullah A,Ahmad J,Muhammad K,Sajjad M,Baik S W. 2017. Action recognition in video sequences using deep Bi-directional LSTM with CNN features[J]. IEEE Access,6:1155–1166.
    Vincent P,Larochelle H,Lajoie I,Bengio Y,Manzagol P A. 2010. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. J Mach Learn Res,11(12):3371–3408.
    Wang F,Chen S C. 2019. Residual learning of deep convolutional neural network for seismic random noise attenuation[J]. IEEE Geosci Remote Sens Lett,16(8):1314–1318. doi: 10.1109/LGRS.2019.2895702
    Yuan S Y,Liu J W,Wang S X,Wang T Y,Shi P D. 2018. Seismic waveform classification and first-break picking using convolution neural networks[J]. IEEE Geosci Remote Sens Lett,15(2):272–276. doi: 10.1109/LGRS.2017.2785834
    Zhao Y X,Li Y,Dong X T,Yang B J. 2019. Low-frequency noise suppression method based on improved DnCNN in desert seismic data[J]. IEEE Geosci Remote Sens Lett,16(5):811–815. doi: 10.1109/LGRS.2018.2882058
  • Related Articles

  • Cited by

    Periodical cited type(12)

    1. 杨磊,陈双贵,闫万生,张瑜,雷光,杨龙. 南北地震带北段及周边地区岩石圈磁场时空变化特征对地震活动的指示意义. 大地测量与地球动力学. 2024(03): 304-309 .
    2. 宋成科,张鹏涛,陈斌. 基于地磁场重复观测资料分析玛多M_W7.3地震前地磁场变化. 防灾科技学院学报. 2024(01): 38-46 .
    3. 陈政宇,倪喆,周思远,金云华,杨薪俊. 岩石圈磁场与地质构造和地震活动性之间的关系——以漾濞地震为例. 地震地质. 2024(02): 449-461 .
    4. 王朝景,李博,苏树朋. 基于多期累积岩石圈磁场变化分析唐山M_S5.1地震震磁异常. 地震研究. 2024(04): 517-527 .
    5. 李晨阳,池成全. 机器学习在地震观测异常数据提取中的应用. 海南师范大学学报(自然科学版). 2024(03): 348-356 .
    6. 张瑜,陈双贵,闫万生,雷光,杨磊,杨龙,马辉源,肖世堂,董兴洲,岳敏. 甘肃青海部分地区流动地磁场时空分布特征. 大地测量与地球动力学. 2023(01): 65-70 .
    7. 张瑜,陈双贵,马辉源,杨磊,雷光,肖世堂,闫万生,杨龙. 2019—2021年门源M_S6.9地震岩石圈磁场异常回溯分析. 华南地震. 2023(01): 46-54 .
    8. 张瑜,陈双贵,马辉源,闫万生,杨磊,雷光,杨龙,杜建清. 2021年5月22日玛多M_S 7.4地震周边地区岩石圈磁场变化及地震前后异常特征分析. 地震地磁观测与研究. 2023(03): 64-72 .
    9. 张海洋,苏树朋,赵慧琴. 2022年青海门源6.9级地震前岩石圈磁场异常变化分析. 地震工程学报. 2022(03): 735-743 .
    10. 蔡苏苏,陈斌. 中国大陆岩石圈震磁异常年变统计分析. 地震研究. 2022(04): 592-598 .
    11. 马永,张海江,高磊,陈志刚. 2021年玛多Ms7.4地震三维地壳速度结构与活动特征(英文). Applied Geophysics. 2022(04): 590-602+605 .
    12. 文丽敏,康国发,白春华,高国明. 南北地震带南段地壳磁异常与强震活动关系研究(英文). Applied Geophysics. 2021(03): 408-419+434 .

    Other cited types(1)

Catalog

    Article views (592) PDF downloads (89) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return