Citation: | Chen T,Yi Y Y. 2021. Random noise suppression of seismic data based on deep convolution neural network. Acta Seismologica Sinica,43(4):474−482. DOI: 10.11939/jass.20200135 |
韩卫雪,周亚同,池越. 2018. 基于深度学习卷积神经网络的地震数据随机噪声去除[J]. 石油物探,57(6):862–869,877. doi: 10.3969/j.issn.1000-1441.2018.06.008
|
Han W X,Zhou Y T,Chi Y. 2018. Deep learning convolutional neural networks for random noise attenuation in seismic data[J]. Petroleum Geophysical Exploration,57(6):862–869,877 (in Chinese).
|
刘婷婷,陈阳康. 2016. f-x域经验模式分解与多道奇异谱分析相结合去除随机噪声[J]. 石油物探,55(1):67–75. doi: 10.3969/j.issn.1000-1441.2016.01.009
|
Liu T T,Chen Y K. 2016. Random noise attenuation based on EMD and MSSA in f-x domain[J]. Petroleum Geophysical Exploration,55(1):67–75 (in Chinese).
|
王钰清,陆文凯,刘金林,张猛,苗永康. 2019. 基于数据增广和CNN的地震随机噪声压制[J]. 地球物理学报,62(1):427–439.
|
Wang Y Q,Lu W K,Liu J L,Zhang M,Miao Y K. 2019. Random seismic noise attenuation based on data augmentation and CNN[J]. Chinese Journal of Geophysics,62(1):427–439 (in Chinese).
|
Buades A,Coll B,Morel J M. 2005. A review of image denoising algorithms with a new one[J]. Multiscale Model Sm,4(2):490–530. doi: 10.1137/040616024
|
Chen W,Chen Y K,Cheng Z X. 2017. Seismic time-frequency analysis using an improved empirical mode decomposition algorithm[J]. J Seism Explorat,26(4):367–380.
|
Chen W,Bai M,Song H. 2019a. Seismic noise attenuation based on waveform classification[J]. J Appl Geophys,167:118–127. doi: 10.1016/j.jappgeo.2019.05.014
|
Chen Y K,Chen W,Wang Y,Bai M. 2019b. Least-squares decomposition with time-space constraint for denoising microseismic data[J]. Geophys J Int,218(3):1702–1718. doi: 10.1093/gji/ggz145
|
Chen Y K,Zu S H,Chen W,Zhang M,Guan Z. 2019c. Learning the blending spikes using sparse dictionaries[J]. Geophys J Int,218(2):1379–1397. doi: 10.1093/gji/ggz200
|
Dabov K,Foi A,Katkovnik V. 2007. Image denoising by sparse 3D transform-domain collaborative ltering[J]. IEEE T Image Process,16(8):2082–2094.
|
Duchi J,Hazan E,Singer Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization[J]. J Mach Learn Res,12(7):2121–2159.
|
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE: 770–778.
|
Li P,Chen Z K,Yang L T,Gao J,Zhang Q C,Deen M J. 2017. Deep convolutional computation model for feature learning on big data in internet of things[J]. IEEE Trans Ind Inform,15(3):1341–1349.
|
Liu J L,Lu W K,Zhang Y Q. 2017. Adaptive multiple subtraction based on sparse coding[J]. IEEE Trans Geosci Remote Sens,55(3):1318–1324. doi: 10.1109/TGRS.2016.2622399
|
Ioffe S, Szegedy C. 2015. Batch normalization: Acceletating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Lille, France: PMLR: 448–456.
|
Stumpf A,Lachiche N,Malet J P,Kerle N,Puissant A. 2014. Active learning in the spatial domain for remote sensing image classification[J]. IEEE Trans Geosci Remote Sens,52(5):2492–2507. doi: 10.1109/TGRS.2013.2262052
|
Ullah A,Ahmad J,Muhammad K,Sajjad M,Baik S W. 2017. Action recognition in video sequences using deep Bi-directional LSTM with CNN features[J]. IEEE Access,6:1155–1166.
|
Vincent P,Larochelle H,Lajoie I,Bengio Y,Manzagol P A. 2010. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. J Mach Learn Res,11(12):3371–3408.
|
Wang F,Chen S C. 2019. Residual learning of deep convolutional neural network for seismic random noise attenuation[J]. IEEE Geosci Remote Sens Lett,16(8):1314–1318. doi: 10.1109/LGRS.2019.2895702
|
Yuan S Y,Liu J W,Wang S X,Wang T Y,Shi P D. 2018. Seismic waveform classification and first-break picking using convolution neural networks[J]. IEEE Geosci Remote Sens Lett,15(2):272–276. doi: 10.1109/LGRS.2017.2785834
|
Zhao Y X,Li Y,Dong X T,Yang B J. 2019. Low-frequency noise suppression method based on improved DnCNN in desert seismic data[J]. IEEE Geosci Remote Sens Lett,16(5):811–815. doi: 10.1109/LGRS.2018.2882058
|