Citation: | Shen T,Huang Z Q,Song S Q,Zheng C,Yuan Y,Liu H,Wu X Y,Chu Y P. 2023. Formation mechanism and motion processes of the Aizigou giant paleolandslide,Jinshajiang river. Acta Seismologica Sinica,45(6):1091−1110. DOI: 10.11939/jass.20220060 |
The Emeishan basalt group widely distributed in southwestern China is often considered as an ideal place for building large hydropower dams due to its deep canyon landforms. Historically, the large-scale high-position and long-distance landslides in Emeishan basalt have caused a large number of casualties, property damage and far-reaching environmental effects. Currently, there is no deep and systematic research for the development process of such landslides over the world, and it is still difficult to objectively access the risk of large-scale high-position landslides in southwestern China. Therefore, the study on the formation mechanism of large-scale high-position and long-distance landslides in Emeishan basalt has significant scientific and practical implication. The Aizigou paleolandslide, which represents a typical large basalt high-speed remote landslide, is located in the Liucheng section of the Lower Jinshajiang river, southwestern Sichuan Province, China. Geological investigation and interpretation of remote sensing imagery, in addition to experiments, numerical simulation, and geochronological dating were used to determine the formation mechanism and motion process of the landslide. Four factors were critical: a substantial height difference between the landslide shearing surface and the foot of the slope, multiple structural defects within the rock mass, a tuff intercalation in the basaltic series with long-term softening due to surface water and groundwater, and seismic activity. The dynamic behavior of the landslide is divided into four stages as follows. ① Seismic waves in the upper part of the slope were significantly amplified by the topography of the mountain. When the accumulation of vibrational energy over a short time period exceeded the strength of the rock mass, the landslide was formed easily. Accordingly, the deformation and failure mechanism was sliding and fracturing. ② Landslide materials with a volume of approximately 3.82×108 m3 slid down from a high position at a high velocity, after which they disintegrated into a debris flow after colliding with the mountainside on the right bank of Aizigou valley. ③ The high-speed debris flow moved approximately 3 km downstream within Aizigou valley. ④ Landslide materials blocked the Jinshajiang river, thereby forming a large barrier dam with a volume of 2.73×108 m3 and establishing a dammed lake behind the barrier dam; its backwater region reached 75 km upstream. An analysis of the landslide-dammed lake deposit samples via optically stimulated luminescence reveals that the landslide occurred approximately 25 thousand years ago.
程谦恭,胡厚田,胡广韬,彭建兵. 2000. 高速岩质滑坡临床弹冲与峰残强降复合启程加速动力学机理[J]. 岩石力学与工程学报,19(2):173–176. doi: 10.3321/j.issn:1000-6915.2000.02.010
|
Cheng Q G,Hu H T,Hu G T,Peng J B. 2000. A study of complex accelerated dynamics mechanism of highspeed landslide by elastic rocky impulse and peak-residual strength drop[J]. Chinese Journal of Rock Mechanics and Engineering,19(2):173–176 (in Chinese).
|
方健,尹小涛,周磊,严飞. 2017. 金沙江中游凝灰岩强度参数综合识别研究[J]. 应用力学学报,34(3):507–513.
|
Fang J,Yin X T,Zhou L,Yan F. 2017. Comprehensive study on strength parameters of the tuff at Jinshajiang grand bridge site on Huali freeway[J]. Chinese Journal of Applied Mechanics,34(3):507–513 (in Chinese).
|
中国地震局. 2020. GB/T 17742—2020中国地震烈度表[S]. 北京: 中国标准出版社: 5–7.
|
China Earthquake Administration. 2020. GB/T 17742−2020 The Chinese Seismic Intensity Scale[S]. Beijing: Standards Press of China: 5–7 (in Chinese).
|
韩刚,赵其华,彭社琴. 2011. 白鹤滩水电站坝区深部破裂岩体地应力演化特征[J]. 岩土力学,32(增刊1):583–589. doi: 10.16285/j.rsm.2011.s1.107
|
Han G,Zhao Q H,Peng S Q. 2011. In-situ stress field evolution of deep fracture rock mass at dam area of Baihetan hydropower station[J]. Rock and Soil Mechanics,32(S1):583–589 (in Chinese).
|
韩刚. 2015. 一类不对称发育的深部变形破裂成因机理: 以白鹤滩水电站坝址区深部变形破裂为例[D]. 成都: 成都理工大学: 57–60.
|
Han G. 2015. A Type of Asymmetric Distributed Deep-Seated Crack Formation Mechanism: A Case Study of Baihetan Hydropower Station[D]. Chengdu: Chengdu University of Technology: 57–60 (in Chinese).
|
胡广韬. 1995. 滑坡动力学[M]. 北京: 地质出版社: 75–76.
|
Hu G T. 1995. Landslide Dynamics[M]. Beijing: Geological Publishing House: 75–76 (in Chinese).
|
胡卸文,黄润秋,施裕兵,吕小平,朱海勇,汪雪瑞. 2009. 唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J]. 岩石力学与工程学报,28(1):181–189. doi: 10.3321/j.issn:1000-6915.2009.01.024
|
Hu X W,Huang R Q,Shi Y B,Lü X P,Zhu H Y,Wang X R. 2009. Analysis of blocking river mechanism of Tangjiashan landslide and dam-breaking mode of its barrier dam[J]. Chinese Journal of Rock Mechanics and Engineering,28(1):181–189 (in Chinese).
|
黄典,杨达源,李郎平,石安池,陆飞,葛兆帅,胥勤勉. 2010. 金沙江白鹤滩河段下切速率初步研究[J]. 第四纪研究,30(5):872–876. doi: 10.3969/j.issn.1001-7410.2010.05.03
|
Huang D,Yang D Y,Li L P,Shi A C,Lu F,Ge Z S,Xu Q M. 2010. Incision rates of the Baihetan section of the Jinsha river[J]. Quaternary Sciences,30(5):872–876 (in Chinese).
|
黄润秋. 2009. 汶川地震地质灾害研究[M]. 北京: 科学出版社: 233–235
|
Huang R Q. 2009. Geohazard Assessment of the Wenchuan Earthquake[M]. Beijing: Science Press: 233–235 (in Chinese).
|
李国和,王思敬,孙承志. 2001. 金沙江水电开发区域工程地质环境综合评价[J]. 地球科学:中国地质大学学报,26(3):309–313.
|
Li G H,Wang S J,Sun C Z. 2001. Comprehensive assessment of engineering geological environment in hydroelectric development zone,Jinshajiang River[J]. Earth Science: Journal of China University of Geosciences,26(3):309–313 (in Chinese).
|
李坪. 1993. 鲜水河—小江断裂带[M]. 北京: 地震出版社: 23–25.
|
Li P. 1993. Xianshuihe and Xiaojiang Fault Zones[M]. Beijing: Seismological Press: 23–25 (in Chinese).
|
李忠生. 2003. 国内外地震滑坡灾害研究综述[J]. 灾害学,18(4):64–70. doi: 10.3969/j.issn.1000-811X.2003.04.013
|
Li Z S. 2003. The state of the art of the research on seismic landslide hazard at home and abroad[J]. Journal of Catastrophology,18(4):64–70 (in Chinese).
|
王刚,王二七. 2005. 挤压造山带中的伸展构造及其成因:以滇中地区晚新生代构造为例[J]. 地震地质,27(2):188–199. doi: 10.3969/j.issn.0253-4967.2005.02.002
|
Wang G,Wang E Q. 2005. Extensional structures within the compressional orogenic belt and its mechanism:A case study for the Late Cenozoic deformation in Central Yunnan[J]. Seismology and Geology,27(2):188–199 (in Chinese).
|
文宝萍,王凡. 2021. 1965年烂泥沟滑坡前兆、高速远程运动及后期演化特征[J]. 水文地质工程地质,48(6):72–80. doi: 10.16030/j.cnki.issn.1000-3665.202108065
|
Wen B P,Wang F. 2021. Precursors and motion characteristics of the 1965 Lannigou rockslides and the subsequent evolution[J]. Hydrogeology and Engineering Geology,48(6):72–80 (in Chinese).
|
吴昊,裴向军,崔圣华,黄润秋,宋词. 2021. 强震山区滑坡发育分布的地形地质控制作用研究[J]. 岩石力学与工程学报,40(5):972–986. doi: 10.13722/j.cnki.jrme.2020.0944
|
Wu H,Pei X J,Cui S H,Hung R Q,Song C. 2021. Study of topographic and geological controls on landslide development and distribution within mountainous regions influenced by strong earthquakes[J]. Chinese Journal of Rock Mechanics and Engineering,40(5):972–986 (in Chinese).
|
邢爱国,胡厚田,杨明. 2002. 大型高速滑坡滑动过程中摩擦特性的试验研究[J]. 岩石力学与工程学报,21(4):522–525. doi: 10.3321/j.issn:1000-6915.2002.04.014
|
Xing A G,Hu H T,Yang M. 2002. Testing study on frictional characteristic of large-scale and high-speed landslide during sliding[J]. Chinese Journal of Rock Mechanics and Engineering,21(4):522–525 (in Chinese).
|
邢爱国,陈龙珠,陈明中. 2004. 岩石力学特性分析与高速滑坡启动速度预测[J]. 岩石力学与工程学报,23(10):1654–1657. doi: 10.3321/j.issn:1000-6915.2004.10.012
|
Xing A G,Chen L Z,Chen M Z. 2004. Analysis on mechanical properties of rock and prediction of muzzle velocity of high-speed landslide[J]. Chinese Journal of Rock Mechanics and Engineering,23(10):1654–1657 (in Chinese).
|
胥良. 2004. 金沙江白鹤滩水电站金江滑坡成因机制及稳定性研究[D]. 成都: 成都理工大学: 72–75.
|
Xu L. 2004. A Study on Genetic Mechanism and Stability of Jinjiang Landslide at the Baihetan Hydropower Station in the Jinsha River[D]. Chengdu: Chengdu University of Technology: 72–75 (in Chinese).
|
徐湘涛. 2012. 金沙江白鹤滩水电站高边坡岩体力学特性及其稳定性研究[D]. 成都: 成都理工大学: 35–36.
|
Xu X T. 2012. Research on Rock Mass Mechanical Characteristics and Stability of High Slope of Baihetan Hydropower Station[D]. Chengdu: Chengdu University of Technology: 35–36 (in Chinese).
|
殷跃平,王猛,李滨,冯振. 2012. 汶川地震大光包滑坡动力响应特征研究[J]. 岩石力学与工程学报,31(10):1969–1982. doi: 10.3969/j.issn.1000-6915.2012.10.003
|
Yin Y P,Wang M,Li B,Feng Z. 2012. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,31(10):1969–1982 (in Chinese).
|
云南省巧家县志编纂委员会. 1997. 巧家县志[M]. 昆明: 云南人民出版社: 61–63.
|
Chorography Compilation Committee of Qiaojia. 1997. History of Qiaojia[M]. Kunming: People’s Press of Yunnan: 61–63 (in Chinese).
|
张明,王正波,孙琳. 2016. 滑坡碎屑流高速远程机制环剪试验研究[J]. 岩石力学与工程学报,35(增刊1):2673–2681. doi: 10.13722/j.cnki.jrme.2014.1609
|
Zhang M,Wang Z B,Sun L. 2016. Research on rapid and long-runout mechanisms of rockslide debris using ring shear tests[J]. Chinese Journal of Rock Mechanics and Engineering,35(S1):2673–2681 (in Chinese).
|
张曙光. 2007. 金沙江白鹤滩水电站高拱坝建设工程地质适宜性研究[D]. 成都: 成都理工大学: 31–32.
|
Zhang S G. 2007. Engineering Geological Feasibility Study of High Arch Dam Construction at Baihetan Hydropower Station, Jinsha River[D]. Chengdu: Chengdu University of Technology: 31–32 (in Chinese).
|
张欣,王运生. 2017. 白鹤滩水电站库区小江断裂带活动性研究[J]. 工程地质学报,25(2):531–540. doi: 10.13544/j.cnki.jeg.2017.02.033
|
Zhang X,Wang Y S. 2017. Activities of Xiaojiang fault zone in Baihetan hydropower station reservoir[J]. Journal of Engineering Geology,25(2):531–540 (in Chinese).
|
周洪福, 方甜, 韦玉婷. 2023. 国内外地震滑坡研究: 现状、问题与展望[J]. 沉积与特提斯地质, 43(3): 615−628.
|
Zhou H F, Fang T, Wei Y T. 2023. Research situations and suggestions on earthquake-induced landslides[J]. Sedimentary Geology and Tethyan Geology, 43(3): 615−628 (in Chinese).
|
Cho S H,Kaneko K. 2004. Influence of the applied pressure waveform on the dynamic fracture processes in rock[J]. Int J Rock Mech Min Sci,41(5):771–784. doi: 10.1016/j.ijrmms.2004.02.006
|
Cui S H,Yang Q W,Pei X J,Huang R Q,Guo B,Zhang W F. 2020. Geological and morphological study of the Daguangbao landslide triggered by the MS8.0 Wenchuan earthquake,China[J]. Geomorphology,370:107394. doi: 10.1016/j.geomorph.2020.107394
|
Fan X M,Scaringi G,Korup O,West A J,van Westen C J,Tanyas H,Hovius N,Hales T C,Jibson R W,Allstadt K E,Zhang L M,Evans S G,Xu C,Li G,Pei X J,Xu Q,Huang R Q. 2019. Earthquake-induced chains of geologic hazards:Patterns,mechanisms,and impacts[J]. Rev Geophys,57(2):421–503. doi: 10.1029/2018RG000626
|
Hungr O,Leroueil S,Picarelli L. 2014. The Varnes classification of landslide types,an update[J]. Landslides,11(2):167–194. doi: 10.1007/s10346-013-0436-y
|
Keefer D K. 1984. Landslides caused by earthquakes[J]. GSA Bull,95(4):406–421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
|
Liu W,He S M. 2016. A two-layer model for simulating landslide dam over mobile river beds[J]. Landslides,13(3):565–576. doi: 10.1007/s10346-015-0585-2
|
Richter C F. 1958. Elementary Seismology[M]. San Francisco: W. H. Freeman and Co: 21–23.
|
Valagussa A,Marc O,Frattini P,Crosta G B. 2019. Seismic and geological controls on earthquake-induced landslide size[J]. Earth Planet Sci Lett,506:268–281. doi: 10.1016/j.jpgl.2018.11.005
|