Ma J M,Fan X Y,He W. 2023. Influence of the guide rail irregularity on low-frequency test results of seismometers on shake table. Acta Seismologica Sinica45(6):1111−1117. DOI: 10.11939/jass.20220062
Citation: Ma J M,Fan X Y,He W. 2023. Influence of the guide rail irregularity on low-frequency test results of seismometers on shake table. Acta Seismologica Sinica45(6):1111−1117. DOI: 10.11939/jass.20220062

Influence of the guide rail irregularity on low-frequency test results of seismometers on shake table

More Information
  • Received Date: April 20, 2022
  • Revised Date: August 10, 2022
  • Available Online: December 24, 2023
  • This paper theoretically analyzed the influence of the guide rail irregularity on calibration of very-broadband seismometers under long stroke motions on shake table, and then quantitatively analyzed the oblique effect on calibration of seismometers on shake table due to the guide rail irregularity at 0.1 Hz and lower frequencies. The results indicate that oblique effect has a larger impact on sensitivity of the horizontal component than that of the vertical component. Higher-precision level meter was used to get the motion trace of the horizontal shake table under long stroke. Based on the influence mechanism of the guide rail irregularity and the data obtained from the level meter, a dynamic compensation system was designed with the software language of Labview. Test results suggest that the calibration accuracy is significantly improved at lower frequencies. Therefore, the dynamic compensating method is effective for very-broadband seismometer testing on shake table.

  • 匙庆磊. 2014. 低频标准振动台系统和振动校准技术研究[D]. 哈尔滨: 中国地震局工程力学研究所: 3–4.
    Chi Q L. 2014. A Study of Low-Frequency Standard Vibration Table Systems and Vibration Calibration Technology[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 3–4 (in Chinese).
    王春宇. 2013. 超低频标准振动台相关设计理论及运动控制技术的研究[D]. 杭州: 浙江大学: 51–65.
    Wang C Y. 2013. Research on Related Design Theory and Motion Control Technology for Ultralow-Frequency Standard Vibrators[D]. Hangzhou: Zhejiang University: 51–65 (in Chinese).
    薛兵,林湛,张妍,朱小毅,杨桂存. 2013. 宽频带地震计反馈模型分析及应用实例[J]. 地震地磁观测与研究,34(1/2):246–253.
    Xue B,Lin Z,Zhang Y,Zhu X Y,Yang G C. 2013. Analysis of the feedback model of the broadband seismometer and an application example[J]. Seismological and Geomagnetic Observation and Research,34(1/2):246–253 (in Chinese).
    杨争雄. 2016. 超低频测振传感器动态测试技术若干问题的研究[D]. 杭州: 浙江大学: 11–12, 34–40.
    Yang Z X. 2016. Research on Some Problems for Dynamic Measurement Technology of Ultra-Low Frequency Vibration Sensors[D]. Hangzhou: Zhejiang University: 11–12, 34–40 (in Chinese).
    于梅. 2007. 低频超低频振动计量技术的研究与展望[J]. 振动与冲击,26(11):83–86. doi: 10.3969/j.issn.1000-3835.2007.11.019
    Yu M. 2007. Research prospects of metrology technology for low-frequency and super low-frequency vibration[J]. Journal of Vibration and Shock,26(11):83–86 (in Chinese).
    Barstow N, Cacho S, Collins J, Hayman R, Followill F, Martin E, Passmore P, Wielandt E. 2005. Transfer Function Measurement, Absolute Sensitivity Measurement, Analysis, and Reporting[R]. Albuquerque, New Mexico: USGS: 16–19
    Bormann P. 2002. New Manual of Seismological Observatory PracticeNMSOP)[M]. Potsdam: GeoForschungsZentrum: 211–212.
    Forbriger T. 2011. Calibration of Seismic Sensors[R]. Karlsruhe: Karlsruhe Institute of Technology: 2–9.
    Havskov J, Alguacil G. 2007. Instrumentation in Earthquake Seismology[M]. Cham, Switzerland: Springer International Publishing: 217–220.
    Wielandt E. 2006. Seismic Sensors and Their Calibration[R]. Stuttgart: Stuttgart University: 8–13.
  • Related Articles

Catalog

    Article views (88) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return