Citation: | Yu W Q,Li H P,Liu M,Song L Z. 2024. A geomagnetic variation prediction method based on chaotic VMD-LSTM neural network. Acta Seismologica Sinica,46(1):92−105. DOI: 10.11939/jass.20220132 |
In view of the nonstationarity and nonlinearity of geomagnetic variation field and the difficulty of physical model prediction, an improved LSTM (long short-term memory) neural network prediction method is proposed and verified by tests. Firstly, the variational mode decomposition (VMD) method is used to denoise the geomagnetic data, and then the chaos theory is introduced to optimize the sample set according to the chaotic characteristics of geomagnetic variation. Finally, the LSTM network is used to predict geomagnetic variation. The results show that the prediction of the optimized method is relatively stable, mean absolute error is less than 2 nT, correlative coefficient R2 is larger than 0.8, the predicted value is well consistent with the measured value, and the effective prediction time can reach 2.5 days, and it has good universality in Chinese Mainland.
程文凯,杜劲松,陈超,艾萨·伊斯马伊力. 2021. 基于XGBoost机器学习的地磁日变重构方法研究[J]. 地震学报,43(1):100–112.
|
Cheng W K,Du J S,Chen C,Yisimayili A. 2021. Reconstruction method for diurnal variations of the geomagnetic field by XGBoost machine learning[J]. Acta Seismologica Sinica,43(1):100–112 (in Chinese).
|
韩敏. 2007. 混沌时间序列预测理论与方法[M]. 北京:中国水利水电出版社:79−92.
|
Han M. 2007. Prediction Theory and Method of Chaotic Time Series[M]. Beijing:China Water Resources and Hydropower Press:79−92 (in Chinese).
|
李松,刘力军. 2017. 混沌时间序列智能预测方法及其应用[M]. 北京:科学出版社:17−27.
|
Li S,Liu L J. 2017. Intelligent Forecasting of Chaotic Time Series and Its Application[M]. Beijing:Science Press:17−27 (in Chinese).
|
刘博,王明烁,李永,陈洪丽,李建强. 2021. 深度学习在时空序列预测中的应用综述[J]. 北京工业大学学报,47(8):925–941.
|
Liu B,Wang M S,Li Y,Chen H L,Li J Q. 2021. Deep learning for spatio-temporal sequence forecasting:A survey[J]. Journal of Beijing University of Technology,47(8):925–941 (in Chinese).
|
卢兆兴,吕志峰,李婷,张金生,姚垚. 2021. 基于BP神经网络的地磁变化场预测研究[J]. 大地测量与地球动力学,41(3):229–233. doi: 10.14075/j.jgg.2021.03.002
|
Lu Z X,Lü Z F,Li T,Zhang J S,Yao Y. 2021. Forecasting of the variable geomagnetic field based on BP neural network[J]. Journal of Geodesy and Geodynamics, 41 (3):229−233 (in Chinese).
|
牛超,李夕海,魏一苇,刘代志. 2021. 区域地磁变化场分析与建模关键技术研究[M]. 西安:西安电子科技大学出版社:1−2.
|
Niu C,Li X H,Wei Y W,Liu D Z. 2021. Research on Key Technology of Regional Geomagnetic Variation Field Analysis and Modeling[M]. Xi’an:Xidian University Press:1−2 (in Chinese).
|
齐玮,王秀芳,李夕海,刘代志. 2010. 基于统计建模的地磁匹配特征量选择[J]. 地球物理学进展,25(1):324–330.
|
Qi W,Wang X F,Li X H,Liu D Z. 2010. Selection of characteristic components for geomagnetic matching based on statistical modeling[J]. Progress in Geophysics,25(1):324–330 (in Chinese).
|
乔玉坤,王仕成,张琪. 2007. 地磁匹配特征量的选择[J]. 地震地磁观测与研究,28(1):42–47. doi: 10.3969/j.issn.1003-3246.2007.01.007
|
Qiao Y K,Wang S C,Zhang Q. 2007. Selection of characteristic variable of geomagnetism for matching[J]. Seismological and Geomagnetic Observation and Research,28(1):42–47 (in Chinese).
|
陶凯,吴定会. 2021. 基于VMD-JAYA-LSSVM的短期风电功率预测[J]. 控制工程, 28 (6):1143−1149.
|
Tao K,Wu D H. 2021. Short-term wind power prediction based on VMD-JAYA-LSSVM[J]. Control Engineering of China, 28 (6):1143−1149 (in Chinese).
|
王赤,陈金波,王水. 1995. 地球变化磁场的分形和混沌特征[J]. 地球物理学报,38(1):16–24.
|
Wang C,Chen J B,Wang S. Fractal and chaotic features for varying component of the Earth’s magnetic field[J]. Chinese Journal of Geophysics, 38 (1):16−24 (in Chinese).
|
王鹏飞,丁兆敏,林鹏飞,黄刚. 2015. 时间滑动相关方法在SST可预报性及可信计算时间研究中的应用[J]. 气候与环境研究,20(3):245–256.
|
Wang P F,Ding Z M,Lin P F,Huang G. 2015. Application of the sliding temporal correlation approach to the studies of predictability and reliable computation time of sea surface temperature.[J]. Climatic and Environmental Research,20(3):245−256 (in Chinese).
|
徐文耀. 2003. 地磁学[M]. 北京:地震出版社:221.
|
Xu W Y. 2003. Geomagnetism[M]. Beijing:Seismological Press:221 (in Chinese).
|
郑小霞,周国旺,任浩翰,符杨. 2017. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击,36(22):22–28.
|
Zheng X X,Zhou G W,Ren H H,Fu Y. 2017. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock,36(22):22–28 (in Chinese).
|
Dragomiretskiy K,Zosso D. 2014. Variational mode decomposition[J]. IEEE Trans Signal Process,62(3):531–544. doi: 10.1109/TSP.2013.2288675
|
Hochreiter S,Schmidhuber J. 1997. Long short-term memory[J]. Neural computation,9(8):1735–1780 (in Chinese). doi: 10.1162/neco.1997.9.8.1735
|
Lorenz E N. 1963. Deterministic nonperiodic flow[J]. Journal of Atmospheric Sciences,20(2):130–141 (in Chinese). doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
Moghadam R A,Yaghoubi M. 2015. Interval emotional neural network for prediction of Kp,AE and Dst geomagnetic activity indices[C]//2015 International Congress on Technology. Mashhad,Iran:IEEE:325−331. doi: 10.1109/ICTCK.2015.7582690.
|
Sutcliffe P R. 1999. The development of a regional geomagnetic daily variation model using neural networks[J]. Annales Geophys,18(1):120–128.
|
Vastano J A,Kostelich E J. 1986. Comparison of algorithms for determining Lyapunov exponents from experimental data[C]//Dimensions and Entropies in Chaotic Systems. Springer Series in Synergetics,vol 32. Berlin,Heidelberg:Springer:100−107.
|
Xie H B,He W X,Liu H. 2008. Measuring time series regularity using nonlinear similarity-based sample entropy[J]. Phy Lett A, 372 (48):7140−7146.
|
Yi S H,Huang S Q,Li X H,Qi W,He Y L,Han S Q,Rong C J,Li Z G. 2010. Modeling and forecasting of the variable geomagnetic field at multiple time scales[C]//IEEE 10th International Conference on Signal Processing Proceedings. Beijing:IEEE:1335−1338. doi: 10.1109/ICOSP.2010.5657017.
|