Zhang J,Fan Y X,Chu W,He Y B. 2024. Changbaishan Tianchi volcano geothermal system:Magma chamber and hidden high-temperature geothermal resources. Acta Seismologica Sinica46(4):557−577. DOI: 10.11939/jass.20220180
Citation: Zhang J,Fan Y X,Chu W,He Y B. 2024. Changbaishan Tianchi volcano geothermal system:Magma chamber and hidden high-temperature geothermal resources. Acta Seismologica Sinica46(4):557−577. DOI: 10.11939/jass.20220180

Changbaishan Tianchi volcano geothermal system:Magma chamber and hidden high-temperature geothermal resources

More Information
  • Received Date: September 28, 2022
  • Revised Date: November 28, 2022
  • Available Online: September 27, 2023
  • The Changbaishan Tianchi volcano is a Late Cenozoic central eruptive composite layered volcano. It has experienced multiple large-scale eruptions since the Holocene, and there is still modern magmatic thermal disturbance in the depth. Therefore, it is a potential high-temperature geothermal resource area in China. The Changbaishan Tianchi volcano is an intraplate volcano which has undergone three forming stages of shield volcano, cinder cone and ignimbrite. The shield-forming stage: Late Pliocene-Early Pleistocene, basaltic magma erupted from Changbaishan Tianchi volcano and adjacent craters overflowed radially, forming a shield-shaped volcanic lava platform. The cone-forming stage: In the Mid-Late Pleistocene, the coarse rock lava formed by multiple eruptions overflowed from the centre of the Tianchi crater and accumulated on the volcanic shield basalt, forming the Tianchi volcanic cone. The ignimbrite-forming stage: In the Holocene, the activity of Tianchi volcanic reached a new peak, and an explosive eruption occurred at its centre. The pyroclastic flow accumulates and consolidates to form ignimbrite, which is covered on the volcanic cone in a sheet shape.

    Active magma chambers still exist beneath Changbaishan Tianchi volcano. The shallow crustal magma chambers provide sufficient heat for underground hydrothermal activity. The groundwater surrounding Tianchi volcano is primarily composed of pore and fissure water in the Late Pleistocene basalt, which is characterised by thick aquifers, good connectivity and an abundance of water. At the periphery of Tianchi volcano, the thickness of basalt thins towards the periphery, and groundwater runoff from the Tianchi volcanic cone to the periphery is impeded by the surrounding bedrock, forming a ringed groundwater overflow zone. The groundwater is heated by high-temperature magma gas (CO2) at depth and then rises along fractures under stratigraphic pressure to form hot springs at the surface. There are three thermal spring groups associated with modern volcanic activity around the Tianchi crater lake in Changbaishan area. The genesis of all thermal spring groups is related to high-temperature magmatic gases from magma sacs. However, the maximum temperature at watering places of the hot spring groups is 82℃, and there is no high-temperature hydrothermal activity.

    The hydrogeological conditions in Changbaishan Tianchi volcano are favourable for the formation of high-temperature hydrothermal systems. The presence of high-temperature upward-moving magma in the crust is evidenced by modern volcanic activity and shallow residual magma chambers serve as an ideal heat source for the formation of high-temperature geothermal systems. Although the Changbaishan Tianchi volcano did not form a high-temperature hydrothermal system on the surface, it is possible that a latent high-temperature geothermal system could form in the subsurface. With the support of the project, we analysed the crustal thermal structure and upward magmatic heat state of the region using geothermal methods. We also investigated the possible existence of a hidden shallow high-temperature geothermal system in the subsurface based on data from the field geothermal geological survey of Changbaishan area and the research results of previous researchers.

    The shallow thermal structure was calculated by using the Fourier heat conduction equation, based on the two geothermal wells of CR1 and CR2 thermophysical parameters data and the regional heat flow data. For depths between 5 km and the depth of the Curie point (DC), we calculated the depth of the Curie point (DC) based on aeromagnetic anomolies data and used geothermal heat flow constraints to calculate the temperature of the Curie point (TC) , then we calculate the geothermal temperature gradient (dT/dZ). At last, we obtained the thermal structure between 5 km and the Curie points, combining the temperature at 5 km depth with the calculated values. The shallow density structure of the Tianchi volcano in Changbaishan area was obtained by using the gravitational anomaly genetic-finite cell method. This was achieved through parametric substitution of thermal and density parameters and inversion of the density difference at the stratigraphic interface. Poisson's equation and steady-state Fourier heat conduction equation were found to have formal similarities. The obtained results are as follows:

    The temperature at a depth of 2 km below the Changbaishan Tianchi volcanic zone ranges from 66 to 110℃, with an average of 78℃. At a depth of 12 km, the temperature ranges from 313 to 417℃, with an average of 372℃. The depth of the area is shallow, with an average of 12.7 km, and the temperature at this depth is 375℃. The eruption center of Changbaishan Tianchi volcanic and Wangtiane volcano is the uplift area of Curie geothermal surface. The ground temperatures in the shallow and middle layers of the crust are centred on Changbaishan volcano and Wangtianwan volcano on the southwest side, forming a connected high-temperature area in the northeast-southwest direction. The north-south temperature profile reveals a deep crustal-mantle heat source beneath the eruption centre of Changbaishan volcano. As heat transfers from downward to upward, the curie surface slowly uplifts from south to north, forming a low and slow high-temperature uplift at a depth of 12−15 km below the Tianchi volcano. This uplift continuously provides heat upward to the magma chambers.

    Gravity inversion was used to study sedimentary strata based on artificial seismic velocity data. The results show that around the eruption centre of Tianchi volcano, the residual densities of the layers at different depth are positively and negatively interspersed. This indicates that the geological bodies of each stratum and the surrounding rocks have a structural pattern of interpenetration in a transversal direction. The average surface density is 1.90 g/cm3, which is consistent with the low-density characteristics of the accumulation rock based on pyroclastic flow formed by multiple eruptions overlying the surface. The average density values of the subsurface layers at various depths are 1.96 g/cm3, 2.21 g/cm3, 2.63 g/cm3, and 2.66 g/cm3, respectively. There is a large jump in the density value between the second and third layers. The density jump zone corresponds to a depth of approximately 3.5−5.5 km (including surface elevation) on the profile. The difference in density between the upper and lower layers is approximately 0.42 g/cm3, which is supposed to be a layer of density step high pressure zone formed during rapid deposition caused by volcanic eruption.

    Based on the above calculations, we have analysed that the depth of the Changbaishan Tianchi volcanic area is approximately 8.6 km, shallower than the average depth of the global crust. This indicates that the heat source in this area is shallow and located in a shallow layer of the crust. This finding is consistent with the geological fact that the Changbaishan Tianchi volcano is an active volcano that has had eruptive activities since the Holocene. The upper uplift zone of the Changbaishan Tianchi volcanic area, along the eruption centres of Changbaishan and Wangtiane, is oriented in a northeast-southwest direction. This reflects the influence of deep geodynamic processes on the thermal state of the shallow crust. Due to the scarcity of heat flow measurement points in the Changbaishan Tianchi volcanic area, the curie surface is crucial for studying the shallow thermal structure of the region. It also provides a theoretical basis for investigating the trajectory of underground magma source storage and transport in the Changbaishan crater.

    Furthermore, we consider the shallow surface density step high pressure zones to be a crucial factor in the development of the deep latent high-temperature geothermal system of the Changbaishan Tianchi volcano. The pressure and material in the deep part of the eruption centre are instantly released during the eruption of volcanic material on the surface, causing the volcanic neck to instability and collapse. This forms rapid sedimentary tectonic conditions, creating a special density step high pressure zone at a depth of 3.5−5.5 km. The sedimentary fluid between the density step high pressure zone and the high-temperature gas-liquid channel experiences abnormally high fluid stress due to the high pressure of the overlying high-pressure zone and the high temperature of the underlying high-temperature gas-liquid channel, causing the high-temperature and high-pressure thermal fluid to converge along the favourable area at the bottom boundary of the density step high pressure zones, forming a hidden high-temperature geothermal system. The hydrothermal activity of the hot springs beneath the surface is not directly linked to the magma chambers. Instead, it is connected to the high-temperature geothermal fluid through the top interface of the density step high pressure zones.

    Main conclusions: ① The geothermal geological and hydro-geological conditions of Changbaishan Tianchi volcano are favourable. Although there is no high-temperature hydrothermal activity on the surface, it is assumed that a high-temperature geothermal system is concealed underground. There is an obvious density step high pressure zone at a depth of 3.5−5.5 km in the area around the eruption centre of Tianchi volcano, which is a favourable area for the formation of hidden high-temperature geothermal resources. This area is favourable for the formation of concealed high-temperature geothermal resources. ② The high-pressure zone is crucial to the formation of geopressured–geothermal resources. Anomalous high-pressure zone may only appear during rapid deposition. During the Late Cenozoic era, the volcanic neck of Changbaishan Tianchi volcano area collapsed due to the instantaneous release of deep pressure and material from the eruption centre. This event created the necessary dynamic condition for rapid deposition and the formation of density step high pressure zones. The high-pressure zone caused by the density step is also a significant factor contributing to the absence of high-temperature hydrothermal activity on the surface of Changbaishan Tianchi volcano.

  • 陈棋福,艾印双,陈赟. 2019. 长白山火山区深部结构探测的研究进展与展望[J]. 中国科学:地球科学,49(5):778–795.
    Chen Q F,Ai Y S,Chen Y. 2019. Overview of deep structures under the Changbaishan volcanic area in Northeast China[J]. Science China Earth Sciences,62(6):935–952. doi: 10.1007/s11430-018-9300-1
    段永红,张先康,杨卓新,张成科,赵金仁,潘纪顺. 2003. 长白山天池火山区基底结构研究[J]. 地震地质,25(3):501–508. doi: 10.3969/j.issn.0253-4967.2003.03.016
    Duan Y H,Zhang X K,Yang Z X,Zhang C K,Zhao J R,Pan J S. 2003. Crystalline basement structure of Changbaishan Tianchi volcanic area[J]. Seismology and Geology,25(3):501–508 (in Chinese).
    樊祺诚,隋建立,王团华,李霓,孙谦. 2007. 长白山火山活动历史、岩浆演化与喷发机制探讨[J]. 高校地质学报,13(2):175–190. doi: 10.3969/j.issn.1006-7493.2007.02.004
    Fan Q C,Sui J L,Wang T H,Li N,Sun Q. 2007. History of volcanic activity,magma evolution and eruptive mechanisms of the Changbai volcanic province[J]. Geological Journal of China Universities,13(2):175–190 (in Chinese).
    高玲,上官志冠,魏海泉,武成智. 2006. 长白山天池火山近期气体地球化学的异常变化[J]. 地震地质,28(3):358–366. doi: 10.3969/j.issn.0253-4967.2006.03.004
    Gao L,Shangguan Z G,Wei H Q,Wu C Z. 2006. Recent geochemical changes of hot-spring gases from Tianchi volcano area,Changbai Mountains,northeast China[J]. Seismology and Geology,28(3):358–366 (in Chinese).
    管彦武,崔承赞,杨国东,刘嘉麒,李允秀,吴昌桓,金旭,吴燕冈. 2020. 基于重力剖面的长白山天池火山地壳岩浆囊建模[J]. 岩石学报,36(12):3840–2852. doi: 10.18654/1000-0569/2020.12.16
    Guan Y W,Choi S C,Yang G D,Liu J Q,Lee Y S,Wu C H,Jin X,Wu Y G. 2020. Changbaishan Tianchi volcano crustal magma chambers modeling with gravity profile[J]. Acta Petrologica Sinica,36(12):3840–3852 (in Chinese). doi: 10.18654/1000-0569/2020.12.16
    郭文峰,刘嘉麒,徐文刚,李稳. 2015. 长白山天池火山岩浆系统再认识:岩石热力学模拟[J]. 科学通报,60(35):3489–3500.
    Guo W F,Liu J Q,Xu W G,Li W. 2015. Reassessment of the magma system beneath Tianchi volcano,Changbaishan:Phase equilibria constraints[J]. Chinese Science Bulletin,60(35):3489–3500 (in Chinese).
    韩湘君,金旭. 2002. 中国东北地区地热资源及热结构分析[J]. 地质与勘探,38(1):74–76. doi: 10.3969/j.issn.0495-5331.2002.01.019
    Han X J,Jin X. 2002. Geothermal resource and thermal structure in Northeastern China[J]. Geology and Prospecting,38(1):74–76 (in Chinese).
    姜光政,高堋,饶松,张友林,唐晓音,黄方,赵平,庞忠和,何丽娟,胡圣标,汪集旸. 2016. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,59(8):2892–2910. doi: 10.6038/cjg20160815
    Jiang G Z,Gao P,Rao S,Zhang Y L,Tang X Y,Huang F,Zhao P,Pang Z H,He L J,Hu S B,Wang J Y. 2016. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics,59(8):2892–2910 (in Chinese).
    李春锋,张兴科,张旸,王瑜. 2006. 长白山天池火山的地质构造背景[J]. 地震地磁观测与研究,27(5):43–49. doi: 10.3969/j.issn.1003-3246.2006.05.009
    Li C F,Zhang X K,Zhang Y,Wang Y. 2006. Analysis of tectonic setting of Changbaishan Tianchi volcano[J]. Seismological and Geomagnetic Observation and Research,27(5):43–49 (in Chinese).
    李婷,刘嘉麒,王先彬,郭正府,郭文峰,成智慧,张茂亮. 2015. 长白山天池火山温泉的气体地球化学特征与成因[J]. 矿物岩石地球化学通报,34(6):1192–1202. doi: 10.3969/j.issn.1007-2802.2015.06.011
    Li T,Liu J Q,Wang X B,Guo Z F,Guo W F,Cheng Z H,Zhang M L. 2015. Geochemical characteristics and genesis of gases from Tianchi volcanic springs,Changbai mountains,Jilin,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,34(6):1192–1202 (in Chinese).
    林元武,高清武,于清桐. 1999. 长白山天池火山区地下热流体化学特征研究[J]. 地质论评,45(增刊):241–247.
    Lin Y W,Gao Q W,Yu Q T. 1999. A study of chemical characteristics of geothermal fluid in Tianchi volcanic region,Changbai mountains[J]. Geological Review,45(S1):241–247 (in Chinese).
    刘东阳,范昱宏,张宇,李婷,仲广培,刘国明,邹凯成,刘冰冰. 2020. 长白山天池火山2002—2005年火山扰动机制研究[J]. 中国地震,36(3):561–570. doi: 10.3969/j.issn.1001-4683.2020.03.018
    Liu D Y,Fan Y H,Zhang Y,Li T,Zhong G P,Liu G M,Zou K C,Liu B B. 2020. Mechanism of the volcanic unrest of the Changbaishan Tianchi volcano from 2002 to 2005[J]. Earthquake Research in China,36(3):561–570 (in Chinese).
    刘国明,杨景奎,王丽娟,孙纪财. 2011. 长白山火山活动状态分析[J]. 矿物岩石地球化学通报,30(4):393–399. doi: 10.3969/j.issn.1007-2802.2011.04.007
    Liu G M,Yang J K,Wang L J,Sun J C. 2011. Active level analysis of the Tianchi volcano in Changbaishan,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 30 (4):393−399 (in Chinese).
    刘嘉麒,王松山. 1982. 长白山火山与天池的形成时代[J]. 科学通报,27(21):1312–1315.
    Liu J Q,Wang S S. 1982. The formative era of Changbai Mountain volcano and Tianchi lake[J]. Chinese Science Bulletin, 27 (21):1312−1315 (in Chinese).
    刘嘉麒,陈双双,郭文峰,孙春青,张茂亮,郭正府. 2015. 长白山火山研究进展[J]. 矿物岩石地球化学通报,34(4):710–723. doi: 10.3969/j.issn.1007-2802.2015.04.005
    Liu J Q,Chen S S,Guo W F,Sun C Q,Zhang M L,Guo Z F. 2015. Research advances in the Mt. Changbai volcano[J]. Bulle tin of Mineralogy,Petrology and Geochemistry,34(4):710–723 (in Chinese).
    刘若新,仇士华,蔡莲珍,魏海泉,杨清福,冼自强,薄官成,钟建. 1997. 长白山天池火山最近一次大喷发年代研究及其意义[J]. 中国科学(D辑),27(5):437–441.
    Liu R X,Qiu S H,Cai L Z,Wei H Q,Yang Q F,Xian Z Q,Bo G C,Zhong J. 1997. Study on the last major eruption of Changbaishan Tianchi volcano and its significance[J]. Science China Earth Sciences, 27 (5):437−441 (in Chinese).
    刘若新,樊祺诚,郑祥身,张明,李霓. 1998. 长白山天池火山的岩浆演化[J]. 中国科学(D辑),28(3):226–231.
    Liu R X,Fan Q C,Zheng X S,Zhang M,Li N. 1998. Magmatic evolution of Changbaishan Tianchi volcano[J]. Science China Earth Sciences, 28 (3):226−231 (in Chinese).
    明跃红,苏伟,房立华. 2006. 长白山天池火山地震类型及火山活动性的初步研究[J]. 中国地震,22(1):56–63. doi: 10.3969/j.issn.1001-4683.2006.01.006
    Ming Y H,Su W,Fang L H. 2006. A preliminary study of types of volcanic earthquakes and volcanic activity in Changbaishan Tianchi volcano[J]. Earthquake research in China,22(1):56–63 (in Chinese).
    仇根根,裴发根,方慧,杜炳锐,张小博,张鹏辉,袁永真,何梅兴,白大为. 2014. 长白山天池火山岩浆系统分析[J]. 地球物理学报,57(10):3466–3477. doi: 10.6038/cjg20141032
    Qiu G G,Pei F G,Fang H,Du B R,Zhang X B,Zhang P H,Yuan Y Z,He M X,Bai D W. 2014. Analysis of magma chamber at the Tianchi volcano area in Changbai mountain[J]. Chinese Journal of Geophysics,57(10):3466–3477 (in Chinese).
    阮帅,汤吉,董泽义,王立凤,邓琰,韩冰. 2020. 基于三维大地电磁AR-QN反演的长白山天池火山区电性结构[J]. 地震地质,42(6):1282–1300. doi: 10.3969/j.issn.0253-4967.2020.06.002
    Ruan S,Tang J,Dong Z Y,Wang L F,Deng Y,Han B. 2020. Electric structrue model of Tianchi volcano in Changbai mountains based on three-dimensional AR-QN magnetotelluric inversion[J]. Seismology and Geology,42(6):1282–1300 (in Chinese).
    单玄龙,蔡壮,郝国丽,邹欣彤,赵容生. 2019. 地球化学温标估算长白山地热系统热储温度[J]. 吉林大学学报(地球科学版),49(3):662–672.
    Shan X L,Cai Z,Hao G L,Zou X T,Zhao R S. 2019. Estimation of thermal storage temperature of geothermal system in Changbai mountain by geothermometers[J]. Journal of Jilin University (Earth Science Edition),49(3):662–672 (in Chinese).
    石耀霖,张健. 2004. 中国东北远离海沟陆内弧后扩张形成新生代火山的深部地球动力学背景[J]. 地震学报,26(增刊):1–8.
    Shi Y L,Zhang J. 2004. Deep geodynamics of far field intercontinental back-arc extension formation of Cenozoic volcanoes in northeastern China[J]. Acta Seismologica Sinica,26(S1):1–8 (in Chinese).
    苏晓轶,李福文,屈旭钧,张天骥. 2019. 长白山地区航磁异常居里面计算及其地质意义[J]. 世界地质,38(2):492–498. doi: 10.3969/j.issn.1004-5589.2019.02.020
    Su X Y,Li F W,Qu X J,Zhang T J. 2019. Calculation and geological significances of aeromagnetic anomaly Curie surface in Changbai Mountain area[J]. Global Geology,38(2):492–498 (in Chinese).
    汤吉,邓前辉,赵国泽,李文军,宣飞,晋光文,白登海,詹艳,梁竞阁,蒲兴华,王继军,李国深,洪飞,马明志,陈风学. 2001. 长白山天池火山区电性结构和岩浆系统[J]. 地震地质,23(2):191–200. doi: 10.3969/j.issn.0253-4967.2001.02.008
    Tang J,Dong Q H,Zhao G Z,Li W J,Xuan F,Jin G W,Bai D H,Zhan Y,Liang J G,Pu X H,Wang J J,Li G S,Hong F,Ma M Z,Chen F X. 2001. Electric conductivity and magma chamber at the Tianchi volcano area in Changbaishan mountain[J]. Seismology and Geology,23(2):191–200 (in Chinese).
    佟伟,穆治国,刘时彬. 1990. 中国晚新生代火山和现代高温水热系统[J]. 地球物理学报,33(3):329–335. doi: 10.3321/j.issn:0001-5733.1990.03.009
    Tong W,Mu Z G,Liu S B. 1990. The Late-Cenozoic volcanoes and active high-temperature hydrothermal systems in China[J]. Chinese Journal of Geophysics,33(3):329–335 (in Chinese).
    魏海泉. 2010. 长白山火山岩浆柱岩浆上升作用过程[J]. 地学前缘,17(1):11–23.
    Wei H Q. 2010. Magma up-moving process within the magma prism beneath the Changbaishan volcanoes[J]. Earth Science Frontiers,17(1):11–23 (in Chinese).
    吴建平,明跃红,张恒荣,刘国明,房立华,苏伟,王未来. 2007. 长白山天池火山区的震群活动研究[J]. 地球物理学报,50(4):1089–1096. doi: 10.3321/j.issn:0001-5733.2007.04.016
    Wu J P,Ming Y H,Zhang H R,Liu G M,Fang L H,Su W,Wang W L. 2007. Earthquake swarm activity in Changbaishan Tianchi volcano[J]. Chinese Journal of Geophysics,50(4):1089–1096 (in Chinese). doi: 10.1002/cjg2.1126
    许东满,郑祥身,许湘希. 1993. 长白山天池地区全新世以来火山活动及其特征[J]. 第四纪研究,(1):85–94. doi: 10.3321/j.issn:1001-7410.1993.01.010
    Xu D M,Zheng X S,Xu X X. 1993. Holocene volcanic activities and their features in Tianchi area,Changbaishan mountains[J]. Quaternary Sciences,(1):85–94 (in Chinese).
    闫佰忠. 2016. 长白山玄武岩区地热水资源成因机制研究[D]. 长春:吉林大学:34−38.
    Yan B Z. 2016. Study on the Formation Mechanism of Geothermal Water Resources in Changbai Mountain Basalt Area[D]. Changchun:Jilin University:34−38 (in Chinese).
    张健,方桂,何雨蓓. 2023. 中国东部地热异常区深层高温分布特征与动力学背景[J]. 地学前缘,30(2):316–332.
    Zhang J,Fang G,He Y B. 2023. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China[J]. Earth Science Frontiers,30(2):316–332 (in Chinese).
    张键,葛社民,许鹤华,熊亮萍,杨计海,张启明. 2000. 利用井温分布估算莺-琼盆地地下流体运移速度[J]. 地质力学学报,6(2):1–5. doi: 10.3969/j.issn.1006-6616.2000.02.001
    Zhang J,Ge S M,Xu H H,Xiong L P,Yang J H,Zhang Q M. 2000. An estimate of the rate of underground fluid flow from well-temperature data in Ying-Qiong basin[J]. Journal of Geomechanics,6(2):1–5 (in Chinese).
    张先康,张成科,赵金仁,杨卓欣,李松林,张建狮,刘宝峰,成双喜,孙国伟,潘素珍. 2002. 长白山天池火山区岩浆系统深部结构的深地震测深研究[J]. 地震学报,24(2):135–143. doi: 10.3321/j.issn:0253-3782.2002.02.003
    Zhang X K,Zhang C K,Zhao J R,Yang Z X,Li S L,Zhang J S,Liu B F,Cheng S X,Sun G W,Pan S Z. 2002. Deep seismic sounding investigation into the deep structure of the magma system in Changbaishan Tianchi volconic region[J]. Acta Seismologica Sinica,24(2):135–143 (in Chinese).
    赵大鹏,雷建设,唐荣余. 2004. 中国东北长白山火山的起源:地震层析成像证据[J]. 科学通报,49(14):1439–1446. doi: 10.3321/j.issn:0023-074X.2004.14.017
    Zhao D P,Lei J S,Tang R Y. 2004. Origin of the Changbai intraplate volcanism in Northeast China:Evidence from seismic tomography[J]. Chinese Science Bulletin,49(13):1401–1408. doi: 10.1360/04wd0125
    Choi S,Oh C W,Götze H J. 2013. Three-dimensional density modeling of the EGM2008 gravity field over the Mount Paekdu volcanic area[J]. J Geophys Res:Solid Earth,118(7):3820–3836. doi: 10.1002/jgrb.50266
    Fan X L,Guo Z,Zhao Y,Chen Q F. 2022. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano,China/North Korea,revealed by ambient noise adjoint tomography[J]. Geophys Res Lett,49(12):e2022GL098308. doi: 10.1029/2022GL098308
    Liu G M,Yang J K,Wang L J,Sun J C. 2011. Analysis of Tianchi volcano activity in Changbai mountain,NE China[J]. Global Geol,14(1):44–53.
    Reinsch T,Dobson P,Asanuma H,Huenges E,Poletto F,Sanjuan B. 2017. Utilizing supercritical geothermal systems:A review of past ventures and ongoing research activities[J]. Geotherm Energy,5(1):16. doi: 10.1186/s40517-017-0075-y
    Rybach L,Buntebarth G. 1982. Relationships between the petrophysical properties density,seismic velocity,heat generation,and mineralogical constitution[J]. Earth Planet Sci Lett,57(2):367–376. doi: 10.1016/0012-821X(82)90157-1
    Stone R. 2010. Is China’s riskiest volcano stirring or merely biding its time?[J]. Science,329(5991):498–499.
    Watanabe N,Numakura T,Sakaguchi K,Saishu H,Okamoto A,Ingebritsen S E,Tsuchiya N. 2017. Potentially exploitable supercritical geothermal resources in the ductile crust[J]. Nat Geosci,10(2):140–144. doi: 10.1038/ngeo2879
    Xu J D,Liu G M,Wu J P,Ming Y H,Wang Q L,Cui D X,Shangguan Z G,Pan B,Lin X D,Liu J Q. 2012. Recent unrest of Changbaishan volcano,northeast China:A precursor of a future eruption?[J]. Geophys Res Lett,39(16):L16305.
    Yang B,Lin W L,Hu X Y,Fang H,Qiu G G,Wang G. 2021. The magma system beneath Changbaishan-Tianchi volcano,China/North Korea:Constraints from three-dimensional magnetotelluric imaging[J]. J Volcanol Geotherm Res,419:107385. doi: 10.1016/j.jvolgeores.2021.107385
    Yang J F,Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone[J]. Nature,579(7797):88–91. doi: 10.1038/s41586-020-2045-y
    Zhang J,Wang C Y,Shi Y L,Cai Y E,Chi W C,Douglas D,Cheng W B,Yuan Y H. 2004. Three-dimensional crustal structure in central Taiwan from gravity inversion with a parallel genetic algorithm[J]. Geophysics,69(4):917–924. doi: 10.1190/1.1778235
  • Related Articles

  • Cited by

    Periodical cited type(5)

    1. 徐纪人,李海兵,曾祥芝,许健生,赵志新. 中国井下地震观测研究回顾与展望——从井下到东海深井垂直地震台阵. 地震学报. 2024(06): 919-935 . 本站查看
    2. 聂利英,冯江江,林浩然,王康,汪基伟. 基于反应谱衰减关系和理想化反应谱模型的我国规范谱长周期段研究. 地震工程与工程振动. 2022(02): 151-162 .
    3. 徐纪人,李海兵,曾祥芝,赵志新. 江苏东海深井观测地震波形及其信噪比研究. 地震学报. 2022(06): 1007-1018 . 本站查看
    4. 聂利英,王康,林浩然,帅娇娇,汪基伟. PGMD选波时规范反应谱局部场地效应参数研究. 武汉理工大学学报(交通科学与工程版). 2021(04): 743-751 .
    5. 李瑞山,袁晓铭. 场地放大系数的理论解答. 岩土工程学报. 2019(06): 1066-1073 .

    Other cited types(1)

Catalog

    Article views (308) PDF downloads (111) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return