Sun D J,Liu F,Wang P,Yu H Y,Wang C R. 2023. The influence of Typhoon Hagupit and Typhoon Bavi on microseisms. Acta Seismologica Sinica45(3):445−454. DOI: 10.11939/jass.20220183
Citation: Sun D J,Liu F,Wang P,Yu H Y,Wang C R. 2023. The influence of Typhoon Hagupit and Typhoon Bavi on microseisms. Acta Seismologica Sinica45(3):445−454. DOI: 10.11939/jass.20220183

The influence of Typhoon Hagupit and Typhoon Bavi on microseisms

More Information
  • Received Date: September 29, 2022
  • Revised Date: January 06, 2023
  • Available Online: April 03, 2023
  • Published Date: May 14, 2023
  • Typhoon-induced waves can usually enhance the microseisms energy, the generation mechanism and source locations of microseisms are controversial. We calculated the power spectral density and carried out polarization analysis of the continuous waveform data of seven wide-band seismic stations on the coast or inland from July 1 to September 1, 2020. The variation of power spectral density in different frequency bands during typhoons has been quantitatively discussed, and the distribution of noise sources at the seismic stations SSE, DYS, HUH, TPS and QHS were studied. The results show that the power spectral density of double-frequency microseisms significantly increased after Typhoon Hagupit and Typhoon Bavi, especially the long period double-frequency microseisms. The single frequency microseisms and microseisms with period ≥20 s increased inconspicuously. The short period double-frequency microseisms recorded at SSE, DYS, HUH, TPS, and QHS seismic stations are affected by different sources in the adjacent sea area. The sources of the long period double-frequency microseisms are consistent, pointing to the south-south-west direction, which may be affected by the source area of the South China Sea or further south. The single frequency microseisms are affected by different noise sources along the coastline.
  • 郑露露,林建民,倪四道,祝捍皓,郑红. 2017. 台风激发的第二类地脉动特征及激发模式分析[J]. 地球物理学报,60(1):187–197.
    Zheng L L,Lin J M,Ni S D,Zhu H H,Zheng H. 2017. Characteristics and generation mechanisms of double frequency microseisms generated by typhoons[J]. Chinese Journal of Geophysics,60(1):187–197 (in Chinese).
    Ardhuin F,Stutzmann E,Schimmel M,Mangeney A. 2011. Ocean wave sources of seismic noise[J]. J Geophys Res:Solid Earth,116(C9):C09004.
    Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782
    Beucler É,Mocquet A,Schimmel M,Chevrot S,Quillard O,Vergne J,Sylvander M. 2015. Observation of deep water microseisms in the North Atlantic Ocean using tide modulations[J]. Geophys Res Lett,42(2):316–322. doi: 10.1002/2014GL062347
    Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009.
    Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268
    Casey R,Templeton M E,Sharer G,Keyson L,Weertman B R,Ahern T. 2018. Assuring the quality of IRIS data with MUSTANG[J]. Seismol Res Lett,89(2A):630–639. doi: 10.1785/0220170191
    Davy C,Barruol G,Fontaine F R,Sigloch K,Stutzmann E. 2014. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophys Res Lett,41(24):8825–8831. doi: 10.1002/2014GL062319
    Fang S K,Lin J M,Ni S D,Li X F,Xu X Q,Zheng H,Xu W. 2020. Improving seismic remote sensing of typhoon with a three-dimensional Earth model[J]. J Acoust Soc Am,148(2):478–491. doi: 10.1121/10.0001624
    Fichtner A. 2015. Source-structure trade-offs in ambient noise correlations[J]. Geophys J Int,202(1):678–694. doi: 10.1093/gji/ggv182
    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177
    Kanasewich E R. 1973. Time Sequence Analysis in Geophysics[M]. Camrose: University of Alberta Press: 274–296.
    Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean[J]. Proc Roy Soc A:Math Phys Eng Sci,464(2091):777–793.
    Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science,23(5):439–447. doi: 10.1007/s11589-010-0743-5
    Koper K D,Burlacu R. 2015. The fine structure of double-frequency microseisms recorded by seismometers in North America[J]. J Geophys Res:Solid Earth,120(3):1677–1691. doi: 10.1002/2014JB011820
    Lin J M,Wang Y T,Wang W T,Li X F,Fang S K,Chen C,Zheng H. 2018. Seismic remote sensing of Super Typhoon Lupit (2009) with seismological array observation in NE China[J]. Remote Sens,10(2):235. doi: 10.3390/rs10020235
    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A:Math Phys Eng Sci,243(857):1–35.
    Lu X Q,Yu H,Ying M,Zhao B K,Zhang S,Lin L M,Bai L N,Wan R J. 2021. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Adv Atmos Sci,38(4):690–699. doi: 10.1007/s00376-020-0211-7
    Lü Y,Ni S D,Xie J,Xia Y J,Zeng X F,Liu B. 2013. Crustal S-wave velocity structure of the Yellowstone region using a seismic ambient noise method[J]. Earthquake Science,26(5):283–291. doi: 10.1007/s11589-013-0016-1
    McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
    Roux P,Sabra K G,Gerstoft P,Kuperman W A,Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett,32(19):L19303.
    Samson J C. 1983. Pure states,polarized waves,and principal components in the spectra of multiple,geophysical time-series[J]. Geophys J Int,72(3):647–664. doi: 10.1111/j.1365-246X.1983.tb02825.x
    Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307(5715):1615–1618. doi: 10.1126/science.1108339
    Sun T H Z,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3):431–448.
    Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018b. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017JB015291
    Xiao H,Xue M,Pan M H,Gao J Y. 2018a. Characteristics of microseisms in South China[J]. Bull Seismol Soc Am,108(5A):2713–2723. doi: 10.1785/0120170237
    Yao H J,van der Hilst R D,Montagner J P. 2010. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. J Geophys Res:Solid Earth,115(B12):B12307. doi: 10.1029/2009JB007142
    Ying Y Z,Bean C J,Bromirski P D. 2014b. Propagation of microseisms from the deep ocean to land[J]. Geophys Res Lett,41(18):6374–6379. doi: 10.1002/2014GL060979
    Ying M,Zhang W,Yu H,Lu X Q,Feng J X,Fan Y X,Zhu Y T,Chen D Q. 2014a. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol,31(2):287–301. doi: 10.1175/JTECH-D-12-00119.1
    Zheng Y,Shen W S,Zhou L Q,Yang Y J,Xie Z J,Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton,northeastern China,and the Sea of Japan from ambient noise tomography[J]. J Geophys Res:Solid Earth,116(B12):B12312. doi: 10.1029/2011JB008637
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 张丽娜,刘祥龙,董培育,陈智勇,宋政宏. 基于三分量宽频带台阵数据的福建地区地震背景噪声源分析. 地球物理学报. 2025(02): 531-546 .

    Other cited types(0)

Catalog

    Article views (284) PDF downloads (96) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return