Jiangchuan Niup, Yuntai Chenup, Ming Wangup, Mingxi Wuup, Jiayu Zhouup, Peide Wangup, Francis T. Wuup2styledi. 1991: MOMENT TENSOR INVERSION OF SOME AFTERSHOCKS OF THE APRIL 18, 1985, LUQUAN, YUNNAN, CHINA, EARTHQUAKE. Acta Seismologica Sinica, 13(4): 412-419.
Citation: Jiangchuan Niup, Yuntai Chenup, Ming Wangup, Mingxi Wuup, Jiayu Zhouup, Peide Wangup, Francis T. Wuup2styledi. 1991: MOMENT TENSOR INVERSION OF SOME AFTERSHOCKS OF THE APRIL 18, 1985, LUQUAN, YUNNAN, CHINA, EARTHQUAKE. Acta Seismologica Sinica, 13(4): 412-419.

MOMENT TENSOR INVERSION OF SOME AFTERSHOCKS OF THE APRIL 18, 1985, LUQUAN, YUNNAN, CHINA, EARTHQUAKE

More Information
  • Published Date: September 01, 2011
  • Based on the three-component accelerograms, recorded at near-field distance by a temporary seismic network consisting of digital cassette tape reacording accelerographs, the focal mechanisms of three aftershocks of the April 18, 1985, Luquan, Yunnan Province, China, earthquake of magnitude Ms=6.1, are calculated using moment tensor inversion technique. The phases of direct P, S and converted SP waves in the displacement seismograms, produced by twice integration of the observed accelerograms, are identified via forward calculation using Green's functions for homogeneous semi-infinite elastic medium, and used in the inversion. The results of inversion show that a better fit of synthetic to the observed seismograms of direct as well as converted phases can be achieved if appropriate weighting functions are used in solving the over-definite linear equations. While these aftershocks are of different magnitudes (ML=4.8, 3.2 and 3.5, respectively) and hypocentral locations, their focal mechanisms are very similar and consistent with that of the main shock. This feature demonstrates the intrinsic correlation between the occurrence of aftershocks and the seismogeneic fault of main shock. Our experimentations show that using the near-field accelerogram obtained from the digital seismic network with appropriate azimuthal coverage on the focal sphere, with the aid of even simple earth model, not only the shear dislocation source, but also the isotropic part and CLVD (compensated linear vector dipole) can be retrieved by the technique of moment tensor inversion.
  • [1] Stump, B. W. and Johnson, L. R. 1977. The determination of source properties by the linear inversion of seismograms. Bull. Seism. Soc. Anger., 67. 1489——1502.

    [2] Gilbert, F, and Dziewonski, A. M——1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Truns. R. Soc,278, 187——269

    [3] McCowan, D. W. 1976. Moment tensor representation of surface wave sources. Geophys. J. R. A.str. Su 44. 595——599.

    [4] Mendigurcn, J. A.,1977. lnvcrsion of surface wave data in source mechanism studies. J. Geophys. Res.,82. 889——894.

    [5] Aki. K, and Patton. H.,1978. Determination of seismic moment tensor using surface waves. Tectnnophysics.49. 213——222.

    [6] Kanamori. H. and Given, J. W, 1981. Use of longperiod surface waves for rapid determination of earthquak source parameters, Piys. Furth Planet. Interiors,27. 8——31.

    [7] Romannowicz, B——1982. Moment tensor inversion of long period Rayleigh waves:A new approach. J. Geophys. Res.,87. 5395——5407.

    [8] Lay. T,Given. J. W. and Kanamori, H., 1982. Long——period mechanism of the 8 November 1980 Eureka, California, earthquake.Bull. Seism. S'oc. Anger., 72. 439——456.

    [9] Fitch, T. J.,.McCowan, D. W. and Shields, M. W.,1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes. J. Geophys. Res., 15,3817——3828

    [10] Longston, C. A., 1981. Source inversion of seismic waveforms: The Koyna. India, earthquakes of 13 September 1967 Bull. Seism. Soc. Amer.,71, 1——24.

    [11] Doornbos. D. J.,1982. Seismic moment tensors and kinematic source parameters. Geophy.s. J. R. Astr. Sor.,69. 235——251.

    [12] Barker, J. S. and Langston, C. A., 1982. Moment tensor inversion of complex earthquakes·Geophys. J. R.9.soc.,68. 777——803.

    [13] Stump. B. W. and Johnson. L. R,1984. Nearfield source characterization ofcontained nuclear explosion in tuff Bull. Seisrn. Soc. Arur. 74, 1——26.

    [14] Lanczos, C. 1961. Linear Differential Operators. Van Nostrand, London, 564.

    [15] 吴明熙、王鸣、孙次昌、柯兆明、王培德、陈运泰、吴大铭,1990. 1985年地震部分余震的精确定位.地球物理学报,12, 2. 121——129.

    [16] Lamb, H——1904. On the propagation of tremors over the surface of an elastic solid. Phil. Truns. R. Sm. London. A203,1——42.

    [17] Johnson. J. R.,1974. Green's function for Lamb's problem. Geopftl}.s. J. R.4.str. Soc.,37, 91——131.

    [18] Dix. C. H——1954. The method of Cagniard in seismic pulse problem. Geophrsic.s, 19, 722——738.

    [19] Cagniard. L., 1962. ReJlectiort and Refraction of Progreesive Seismic Waves. Translated and revised by Flinn,E. A. and Dix. C. H.,McGrawHilh New York.

    [20] De Hoop. A. T.,1960. A modification of Cagniard's method for solving seismic pulse problems. Appl. Sci.Rcs. 88, 349——356.

    [1] Stump, B. W. and Johnson, L. R. 1977. The determination of source properties by the linear inversion of seismograms. Bull. Seism. Soc. Anger., 67. 1489——1502.

    [2] Gilbert, F, and Dziewonski, A. M——1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Truns. R. Soc,278, 187——269

    [3] McCowan, D. W. 1976. Moment tensor representation of surface wave sources. Geophys. J. R. A.str. Su 44. 595——599.

    [4] Mendigurcn, J. A.,1977. lnvcrsion of surface wave data in source mechanism studies. J. Geophys. Res.,82. 889——894.

    [5] Aki. K, and Patton. H.,1978. Determination of seismic moment tensor using surface waves. Tectnnophysics.49. 213——222.

    [6] Kanamori. H. and Given, J. W, 1981. Use of longperiod surface waves for rapid determination of earthquak source parameters, Piys. Furth Planet. Interiors,27. 8——31.

    [7] Romannowicz, B——1982. Moment tensor inversion of long period Rayleigh waves:A new approach. J. Geophys. Res.,87. 5395——5407.

    [8] Lay. T,Given. J. W. and Kanamori, H., 1982. Long——period mechanism of the 8 November 1980 Eureka, California, earthquake.Bull. Seism. S'oc. Anger., 72. 439——456.

    [9] Fitch, T. J.,.McCowan, D. W. and Shields, M. W.,1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes. J. Geophys. Res., 15,3817——3828

    [10] Longston, C. A., 1981. Source inversion of seismic waveforms: The Koyna. India, earthquakes of 13 September 1967 Bull. Seism. Soc. Amer.,71, 1——24.

    [11] Doornbos. D. J.,1982. Seismic moment tensors and kinematic source parameters. Geophy.s. J. R. Astr. Sor.,69. 235——251.

    [12] Barker, J. S. and Langston, C. A., 1982. Moment tensor inversion of complex earthquakes·Geophys. J. R.9.soc.,68. 777——803.

    [13] Stump. B. W. and Johnson. L. R,1984. Nearfield source characterization ofcontained nuclear explosion in tuff Bull. Seisrn. Soc. Arur. 74, 1——26.

    [14] Lanczos, C. 1961. Linear Differential Operators. Van Nostrand, London, 564.

    [15] 吴明熙、王鸣、孙次昌、柯兆明、王培德、陈运泰、吴大铭,1990. 1985年地震部分余震的精确定位.地球物理学报,12, 2. 121——129.

    [16] Lamb, H——1904. On the propagation of tremors over the surface of an elastic solid. Phil. Truns. R. Sm. London. A203,1——42.

    [17] Johnson. J. R.,1974. Green's function for Lamb's problem. Geopftl}.s. J. R.4.str. Soc.,37, 91——131.

    [18] Dix. C. H——1954. The method of Cagniard in seismic pulse problem. Geophrsic.s, 19, 722——738.

    [19] Cagniard. L., 1962. ReJlectiort and Refraction of Progreesive Seismic Waves. Translated and revised by Flinn,E. A. and Dix. C. H.,McGrawHilh New York.

    [20] De Hoop. A. T.,1960. A modification of Cagniard's method for solving seismic pulse problems. Appl. Sci.Rcs. 88, 349——356.
  • Related Articles

Catalog

    Article views (1527) PDF downloads (141) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return