Jiangchuan Niup, Yuntai Chenup, Ming Wangup, Mingxi Wuup, Jiayu Zhouup, Peide Wangup, Francis T. Wuup2styledi. 1991: MOMENT TENSOR INVERSION OF SOME AFTERSHOCKS OF THE APRIL 18, 1985, LUQUAN, YUNNAN, CHINA, EARTHQUAKE. Acta Seismologica Sinica, 13(4): 412-419.
Citation: Jiangchuan Niup, Yuntai Chenup, Ming Wangup, Mingxi Wuup, Jiayu Zhouup, Peide Wangup, Francis T. Wuup2styledi. 1991: MOMENT TENSOR INVERSION OF SOME AFTERSHOCKS OF THE APRIL 18, 1985, LUQUAN, YUNNAN, CHINA, EARTHQUAKE. Acta Seismologica Sinica, 13(4): 412-419.

MOMENT TENSOR INVERSION OF SOME AFTERSHOCKS OF THE APRIL 18, 1985, LUQUAN, YUNNAN, CHINA, EARTHQUAKE

More Information
  • Published Date: September 01, 2011
  • Based on the three-component accelerograms, recorded at near-field distance by a temporary seismic network consisting of digital cassette tape reacording accelerographs, the focal mechanisms of three aftershocks of the April 18, 1985, Luquan, Yunnan Province, China, earthquake of magnitude Ms=6.1, are calculated using moment tensor inversion technique. The phases of direct P, S and converted SP waves in the displacement seismograms, produced by twice integration of the observed accelerograms, are identified via forward calculation using Green's functions for homogeneous semi-infinite elastic medium, and used in the inversion. The results of inversion show that a better fit of synthetic to the observed seismograms of direct as well as converted phases can be achieved if appropriate weighting functions are used in solving the over-definite linear equations. While these aftershocks are of different magnitudes (ML=4.8, 3.2 and 3.5, respectively) and hypocentral locations, their focal mechanisms are very similar and consistent with that of the main shock. This feature demonstrates the intrinsic correlation between the occurrence of aftershocks and the seismogeneic fault of main shock. Our experimentations show that using the near-field accelerogram obtained from the digital seismic network with appropriate azimuthal coverage on the focal sphere, with the aid of even simple earth model, not only the shear dislocation source, but also the isotropic part and CLVD (compensated linear vector dipole) can be retrieved by the technique of moment tensor inversion.
  • [1] Stump, B. W. and Johnson, L. R. 1977. The determination of source properties by the linear inversion of seismograms. Bull. Seism. Soc. Anger., 67. 1489——1502.

    [2] Gilbert, F, and Dziewonski, A. M——1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Truns. R. Soc,278, 187——269

    [3] McCowan, D. W. 1976. Moment tensor representation of surface wave sources. Geophys. J. R. A.str. Su 44. 595——599.

    [4] Mendigurcn, J. A.,1977. lnvcrsion of surface wave data in source mechanism studies. J. Geophys. Res.,82. 889——894.

    [5] Aki. K, and Patton. H.,1978. Determination of seismic moment tensor using surface waves. Tectnnophysics.49. 213——222.

    [6] Kanamori. H. and Given, J. W, 1981. Use of longperiod surface waves for rapid determination of earthquak source parameters, Piys. Furth Planet. Interiors,27. 8——31.

    [7] Romannowicz, B——1982. Moment tensor inversion of long period Rayleigh waves:A new approach. J. Geophys. Res.,87. 5395——5407.

    [8] Lay. T,Given. J. W. and Kanamori, H., 1982. Long——period mechanism of the 8 November 1980 Eureka, California, earthquake.Bull. Seism. S'oc. Anger., 72. 439——456.

    [9] Fitch, T. J.,.McCowan, D. W. and Shields, M. W.,1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes. J. Geophys. Res., 15,3817——3828

    [10] Longston, C. A., 1981. Source inversion of seismic waveforms: The Koyna. India, earthquakes of 13 September 1967 Bull. Seism. Soc. Amer.,71, 1——24.

    [11] Doornbos. D. J.,1982. Seismic moment tensors and kinematic source parameters. Geophy.s. J. R. Astr. Sor.,69. 235——251.

    [12] Barker, J. S. and Langston, C. A., 1982. Moment tensor inversion of complex earthquakes·Geophys. J. R.9.soc.,68. 777——803.

    [13] Stump. B. W. and Johnson. L. R,1984. Nearfield source characterization ofcontained nuclear explosion in tuff Bull. Seisrn. Soc. Arur. 74, 1——26.

    [14] Lanczos, C. 1961. Linear Differential Operators. Van Nostrand, London, 564.

    [15] 吴明熙、王鸣、孙次昌、柯兆明、王培德、陈运泰、吴大铭,1990. 1985年地震部分余震的精确定位.地球物理学报,12, 2. 121——129.

    [16] Lamb, H——1904. On the propagation of tremors over the surface of an elastic solid. Phil. Truns. R. Sm. London. A203,1——42.

    [17] Johnson. J. R.,1974. Green's function for Lamb's problem. Geopftl}.s. J. R.4.str. Soc.,37, 91——131.

    [18] Dix. C. H——1954. The method of Cagniard in seismic pulse problem. Geophrsic.s, 19, 722——738.

    [19] Cagniard. L., 1962. ReJlectiort and Refraction of Progreesive Seismic Waves. Translated and revised by Flinn,E. A. and Dix. C. H.,McGrawHilh New York.

    [20] De Hoop. A. T.,1960. A modification of Cagniard's method for solving seismic pulse problems. Appl. Sci.Rcs. 88, 349——356.

    [1] Stump, B. W. and Johnson, L. R. 1977. The determination of source properties by the linear inversion of seismograms. Bull. Seism. Soc. Anger., 67. 1489——1502.

    [2] Gilbert, F, and Dziewonski, A. M——1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Truns. R. Soc,278, 187——269

    [3] McCowan, D. W. 1976. Moment tensor representation of surface wave sources. Geophys. J. R. A.str. Su 44. 595——599.

    [4] Mendigurcn, J. A.,1977. lnvcrsion of surface wave data in source mechanism studies. J. Geophys. Res.,82. 889——894.

    [5] Aki. K, and Patton. H.,1978. Determination of seismic moment tensor using surface waves. Tectnnophysics.49. 213——222.

    [6] Kanamori. H. and Given, J. W, 1981. Use of longperiod surface waves for rapid determination of earthquak source parameters, Piys. Furth Planet. Interiors,27. 8——31.

    [7] Romannowicz, B——1982. Moment tensor inversion of long period Rayleigh waves:A new approach. J. Geophys. Res.,87. 5395——5407.

    [8] Lay. T,Given. J. W. and Kanamori, H., 1982. Long——period mechanism of the 8 November 1980 Eureka, California, earthquake.Bull. Seism. S'oc. Anger., 72. 439——456.

    [9] Fitch, T. J.,.McCowan, D. W. and Shields, M. W.,1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes. J. Geophys. Res., 15,3817——3828

    [10] Longston, C. A., 1981. Source inversion of seismic waveforms: The Koyna. India, earthquakes of 13 September 1967 Bull. Seism. Soc. Amer.,71, 1——24.

    [11] Doornbos. D. J.,1982. Seismic moment tensors and kinematic source parameters. Geophy.s. J. R. Astr. Sor.,69. 235——251.

    [12] Barker, J. S. and Langston, C. A., 1982. Moment tensor inversion of complex earthquakes·Geophys. J. R.9.soc.,68. 777——803.

    [13] Stump. B. W. and Johnson. L. R,1984. Nearfield source characterization ofcontained nuclear explosion in tuff Bull. Seisrn. Soc. Arur. 74, 1——26.

    [14] Lanczos, C. 1961. Linear Differential Operators. Van Nostrand, London, 564.

    [15] 吴明熙、王鸣、孙次昌、柯兆明、王培德、陈运泰、吴大铭,1990. 1985年地震部分余震的精确定位.地球物理学报,12, 2. 121——129.

    [16] Lamb, H——1904. On the propagation of tremors over the surface of an elastic solid. Phil. Truns. R. Sm. London. A203,1——42.

    [17] Johnson. J. R.,1974. Green's function for Lamb's problem. Geopftl}.s. J. R.4.str. Soc.,37, 91——131.

    [18] Dix. C. H——1954. The method of Cagniard in seismic pulse problem. Geophrsic.s, 19, 722——738.

    [19] Cagniard. L., 1962. ReJlectiort and Refraction of Progreesive Seismic Waves. Translated and revised by Flinn,E. A. and Dix. C. H.,McGrawHilh New York.

    [20] De Hoop. A. T.,1960. A modification of Cagniard's method for solving seismic pulse problems. Appl. Sci.Rcs. 88, 349——356.
  • Related Articles

  • Cited by

    Periodical cited type(11)

    1. 廖程,梁明剑,周文英,吴微微,刘书淮. 基于无人机SfM及LaDiCaoz的地震地表破裂定量参数提取——以炉霍扎交村一带地震典型地表破裂为例. 大地测量与地球动力学. 2024(02): 183-188 .
    2. 朱英浩,孟金龙,杨平科. 基于GIS和无人机航摄测量技术的城市数字地形测量方法. 粉煤灰综合利用. 2023(06): 134-140 .
    3. 刘超,杜鹏,雷启云,武治群,吕俊强,余思汗. 基于无人机航测的天景山断裂孟家湾地貌精细解译及活动构造定量参数提取. 地震研究. 2022(01): 100-108 .
    4. 刘超,王银,余思汗,雷启云,杨顺. 新型便携式行业级无人机精灵4RTK定位精度分析. 震灾防御技术. 2022(01): 114-123 .
    5. 李忠武,陈桂华. 基于无人机倾斜航空摄影三维点云测量同震倾滑变形研究——以2021年玛多M_S7.4地震地表破裂为例. 震灾防御技术. 2022(01): 46-55 .
    6. 吴永春. 铁路桥梁巡检中无人机摄影测量技术的应用研究. 科学咨询(科技·管理). 2022(08): 96-98 .
    7. 刘超,武治群,王银,余思汗,杨顺. 基于网络RTK技术分析新型无人机获取DEM的差异性. 科技和产业. 2022(09): 395-400 .
    8. 殷翔,刘炜,姚生海,盖海龙. 基于无人机测量的微地貌提取——以昆中断裂(巴隆-温泉段)为例. 震灾防御技术. 2022(04): 701-709 .
    9. 李东臣,任俊杰,张志文,刘亮. 基于高分辨率无人机影像的地震地表破裂半自动提取方法——以2021年M_S7.4青海玛多地震为例. 地震地质. 2022(06): 1484-1502 .
    10. 吴永春. 铁路桥梁巡检中无人机摄影测量技术的应用研究. 科学咨询. 2022(15): 96-98 .
    11. 张志文,任俊杰,章小龙. 高精度无人机航测在2021年玛多7.4级地震地表破裂精细研究中的应用. 震灾防御技术. 2021(03): 437-447 .

    Other cited types(1)

Catalog

    Article views (1548) PDF downloads (141) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return