Xiong Zhenghui, Li Xiaojun, Dai Zhijun, Chen Su. 2019: A method for identifying the baseline drift of strong-motion records based on L1-norm regularization. Acta Seismologica Sinica, 41(1): 111-123. DOI: 10.11939/jass.20180072
Citation: Xiong Zhenghui, Li Xiaojun, Dai Zhijun, Chen Su. 2019: A method for identifying the baseline drift of strong-motion records based on L1-norm regularization. Acta Seismologica Sinica, 41(1): 111-123. DOI: 10.11939/jass.20180072

A method for identifying the baseline drift of strong-motion records based on L1-norm regularization

More Information
  • Received Date: May 30, 2018
  • Revised Date: June 24, 2018
  • Available Online: January 16, 2019
  • Published Date: December 31, 2018
  • To identify the accurate baseline drift in ground acceleration, velocity, and displacement time series is one of the basic and challenge problems in the research of strong ground motion. This study proposes a new baseline-correction method based on L1-norm regularization. It aims at minimizing the error of fitting velocity trace subject to let the sum of absolute values of acceleration baseline drift be small. As the baseline-offset is figured out by the convexity-optimized tool automatically in this L1-norm regularization based baseline-correction method, the subjective interferences can be well avoided such as selecting segmentation times and the start and end moments. And then representative noise models of acceleration baseline offset are added respectively to typical strong-motion records in order to test and verify the new method. The results shows that our method is universal for identifying and processing single-, double-, and multi-stage baseline drift noises. It can sensitively capture the trend (slope) change of the velocity trace while it’s no need to set segmentation times and positions of piecewise linear fitting in advance. The pre-event interval of strong-motion record has a great influence on the processing results of this method. If the pre-event interval is long enough (e.g. 20 seconds) in a record, the identification of the baseline drift noise will be much more accurate, and the recovered displacement trace will match better with the real one. Additionally, this method shows good performance to recover peak ground velocity and the whole velocity time series even if the record almost has no pre-event portion.
  • 符伟,刘财. 2015. 基于L1正则化的地震谱反演方法[J]. 世界地质,34(2):505–510 doi: 10.3969/j.issn.1004-5589.2015.02.028
    Fu W,Liu C. 2015. Seismic spectral-inversion technique based on L1-norm regulation method[J]. Global Geology,34(2):505–510 (in Chinese)
    李欣,杨婷,孙文博,王贝贝. 2018. 一种基于光滑L1范数的地震数据插值方法[J]. 石油地球物理勘探,53(2):251–256
    Li X,Yang T,Sun W B,Wang B B. 2018. A gradient projection method for smooth L1 norm regularization based seismic data sparse interpolation[J]. Oil Geophysical Prospecting,53(2):251–256 (in Chinese)
    彭小波,李小军,刘泉. 2010. 数字加速度记录基线校正相关问题的初步研究[J]. 世界地震工程,26(增刊1):142–147
    Peng X B,Li X J,Liu Q. 2010. Preliminary study on baseline correction of digital acceleration records[J]. World Earthquake Engineering,26(S1):142–147 (in Chinese)
    彭小波,李小军,刘启方. 2011. 基于强震记录估算同震位移的研究进展及方法[J]. 世界地震工程,27(3):73–80
    Peng X B,Li X J,Liu Q F. 2011. Advances and methods for the recovery of coseismic displacements from strong-motion accelero-grams[J]. World Earthquake Engineering,27(3):73–80 (in Chinese)
    荣棉水,彭艳菊,喻畑,杨宇. 2014. 近断层强震观测记录基线校正的优化方法[J]. 土木工程学报,47(增刊2):308–314
    Rong M S,Peng Y J,Yu T,Yang Y. 2014. Optimized baseline correction method for the near-fault observation strong motion records[J]. China Civil Engineering Journal,47(S2):308–314 (in Chinese)
    王国权,周锡元. 2004. 9·21台湾集集地震近断层强震记录的基线校正[J]. 地震地质,26(1):1–14 doi: 10.3969/j.issn.0253-4967.2004.01.001
    Wang G Q,Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 Chi-Chi,Taiwan earth-quake[J]. Seismology and Geology,26(1):1–14 (in Chinese)
    于海英,江汶乡,解全才,杨永强,程翔,杨剑. 2009. 近场数字强震仪记录误差分析与零线校正方法[J]. 地震工程与工程振动,29(6):1–12
    Yu H Y,Jiang W X,Xie Q C,Yang Y Q,Cheng X,Yang J. 2009. Baseline correction of digital strong-motion records in near-field[J]. Journal of Earthquake Engineering and Engineering Vibration,29(6):1–12 (in Chinese)
    周宝峰,于海英,温瑞智,谢礼立. 2013. 一种识别永久位移的新方法[J]. 土木工程学报,46(增刊2):135–140
    Zhou B F,Yu H Y,Wen R Z,Xie L L. 2013. A new way of permanent displacement identification[J]. China Civil Engineering Journal,46(S2):135–140 (in Chinese)
    周巍. 2013. L1范数最小化算法及应用[D]. 广州: 华南理工大学: 14–23.
    Zhou W. 2013. L1-Norm Minimization Algorithms and Its Applications[D]. Guangzhou: South China University of Technology: 14–23(in Chinese).
    Akkar S,Boore D M. 2009. On baseline corrections and uncertainty in response spectra for baseline variations commonly encountered in digital accelerograph records[J]. Bull Seismol Soc Am,99(3):1671–1690 doi: 10.1785/0120080206
    Allen R V. 1978. Automatic earthquake recognition and timing from single traces[J]. Bull Seismol Soc Am,68(5):1521–1532
    Allen R V. 1982. Automatic phase pickers:Their present use and future prospects[J]. Bull Seismol Soc Am,72(6B):S225–S242
    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91(5):1199–1211
    Boore D M. 2005. On pads and filters:Processing strong-motion data[J]. Bull Seismol Soc Am,95(2):745–750 doi: 10.1785/0120040160
    Boyd S P, Vandenberghe L. 2004. Convex Optimization[M]. New York: Cambridge University Press: 291–311.
    Chao W A,Wu Y M,Zhao L. 2010. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination[J]. J Seismol,14(3):495–504 doi: 10.1007/s10950-009-9178-7
    Chiu H C. 1997. Stable baseline correction of digital strong-motion data[J]. Bull Seismol Soc Am,87(4):932–944
    Dai Z J,Li X J,Hou C L. 2014. An optimization method for the generation of ground motions compatible with multi-damping design spectra[J]. Soil Dyn Earthq Eng,66:199–205 doi: 10.1016/j.soildyn.2014.06.032
    Donoho D L,Tsaig Y. 2008. Fast solution of L1-norm minimization problems when the solution may be sparse[J]. IEEE Trans Inf Theory,54(11):4789–4812 doi: 10.1109/TIT.2008.929958
    Efron B,Hastie T,Johnstone I,Tibshirani R. 2004. Least angle regression[J]. Ann Statist,32(2):407–499 doi: 10.1214/009053604000000067
    Huang Y N,Whittaker A S,Luco N. 2010. NEHRP site amplification factors and the NGA relationships[J]. Earthquake Spectra,26(2):583–593
    Hershberger J. 1955. Recent developments in strong-motion analysis[J]. Bull Seismol Soc Am,45(1):11–21
    Housner G W. 1947. Ground displacement computed from strong-motion accelerograms[J]. Bull Seismol Soc Am,37(4):299–305
    Iwan W D,Moser M A,Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am,75(5):1225–1246
    Jones J, Kalkan E, Stephens C. 2017. Processing and Review Interface for Strong Motion Data (PRISM) Software, Version 1.0.0: Methodology and Automated Processing[R].Reston: U S Geological Survey : 3–20.
    Mallat S G,Zhang Z F. 1993. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans Signal Process,41(12):3397–3415 doi: 10.1109/78.258082
    PEER. 2013. PEER NGA-West2 ground motion database[EB/OL]. [2017–10–02]. https://peer.berkeley.edu/research/nga-west-2.
    Schmidt M. 2005. Least Squares Optimization With L1-Norm Regularization[R]. Vancouver: Univercity of British Clumbia: 3–6.
    Tibshirani R. 1996. Regression shrinkage and selection via the lasso[J]. J Roy Statist Soc Ser B,58(1):267–288
    Trifunac M D. 1970. Low Frequency Digitization Errors and A New Method for Zero Baseline Correction of Strong-Motion Accelerograms[R]. Pasadena: Earthquake Engineering Research Laboratory: 7–24.
    Trifunac M D,Lee V W. 1974. A note on the accuracy of computed ground displacements from strong-motion accelerograms[J]. Bull Seismol Soc Am,64(4):1209–1219
    Wang G Q,Boore D M,Igel H,Zhou X Y. 2003. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,93(2):674–693 doi: 10.1785/0120020045
    Wang R J,Schurr B,Milkereit C,Shao Z G,Jin M P. 2011a. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am,101(5):2029–2044 doi: 10.1785/0120110039
    Wang R J,Parolai S,Ge M R,Jin M P,Walter T R,Zschau J. 2013. The 2011 MW9.0 Tohoku earthquake:Comparison of GPS and strong-motion data[J]. Bull Seismol Soc Am,103(2B):1336–1347 doi: 10.1785/0120110264
    Wang Y F,Cao J J,Yang C C. 2011b. Recovery of seismic wavefields based on compressive sensing by an L1-norm constrained trust region method and the piecewise random subsampling[J]. Geophys J Int,187(1):199–213 doi: 10.1111/gji.2011.187.issue-1
    Wu Y M,Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol,11(2):159–170 doi: 10.1007/s10950-006-9043-x
  • Related Articles

Catalog

    Article views (1266) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return