Citation: | Guo C S,Sun P C,Wei D P. 2023. Geodynamical simulation of the effects of ridge subduction on the scale of the seismogenic zone south of Chile Triple Junction. Acta Seismologica Sinica,45(3):521−537. DOI: 10.11939/jass.20210192 |
贾鸿瑞,魏东平. 2021. 智利三联点相关的板块相对运动及其地球动力学意义[J]. 地球物理学报,64(10):3567–3575. doi: 10.6038/cjg2021O0470
|
Jia H R,Wei D P. 2021. Relativemotion of plates related to the Chile triple junction and geodynamic significance[J]. Chinese Journal of Geophysics,64(10):3567–3575 (in Chinese).
|
李忠海,石耀霖. 2016. 三维板块几何形态对大陆深俯冲动力学的制约[J]. 地球物理学报,59(8):2806–2817. doi: 10.6038/cjg20160808
|
Li Z H,Shi Y L. 2016. Constraints of 3-D plate geometry on the dynamics of continental deep subduction[J]. Chinese Journal of Geophysics,59(8):2806–2817 (in Chinese).
|
刘梦雪,魏东平,史亚男. 2019. 俯冲初始时板块分界面形状对俯冲过程的影响[J]. 地球物理学报,62(1):78–87. doi: 10.6038/cjg2019L0717
|
Liu M X,Wei D P,Shi Y N. 2019. Effect of plate interface geometry on the evolution of subduction[J]. Chinese Journal of Geophysics,62(1):78–87 (in Chinese).
|
史亚男,魏东平,皇甫鹏鹏,李忠海,刘梦雪. 2019. 海洋板块俯冲作用下上覆大陆岩石层减薄机制的动力学模拟[J]. 地球物理学报,62(1):63–77. doi: 10.6038/cjg2019L0785
|
Shi Y N,Wei D P,Huangfu P P,Li Z H,Liu M X. 2019. Dynamics of thinning of overriding continental lithosphere induced by oceanic plate subduction:Numerical modeling[J]. Chinese Journal of Geophysics,62(1):63–77 (in Chinese).
|
沈晓明,张海祥,马林. 2010. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学,34(2):181–195. doi: 10.3969/j.issn.1001-1552.2010.02.004
|
Shen X M,Zhang H X,Ma L. 2010. Ridge subduction and the possible evidences in Chinese Altay,Xinjiang[J]. Geotectonica et Metallogenia,34(2):181–195 (in Chinese).
|
王振山,魏东平. 2018. 全球板块运动三联点形成与演化规律的研究进展[J]. 地球物理学进展,33(5):1834–1843. doi: 10.6038/pg2018BB0286
|
Wang Z S,Wei D P. 2018. Research progress on the formation and evolution of triple junctions of global plate motions[J]. Progress in Geophysics,33(5):1834–1843 (in Chinese).
|
徐佳静,王振山,王少坡,魏东平. 2019. 智利三联点南部扩张洋脊俯冲区域岩石层热结构的数值模拟[J]. 地球物理学报,62(12):4729–4737. doi: 10.6038/cjg2019M0592
|
Xu J J,Wang Z S,Wang S P,Wei D P. 2019. Numerical simulation of the lithospheric thermal structure in the subduction zone of the South Chile triple junction[J]. Chinese Journal of Geophysics,62(12):4729–4737 (in Chinese).
|
张克亮,魏东平. 2011. 双地震带的影响因素探讨[J]. 地球物理学报,54(11):2838–2850. doi: 10.3969/j.issn.0001-5733.2011.11.014
|
Zhang K L,Wei D P. 2011. On the influence factors of double seismic zones[J]. Chinese Journal of Geophysics,54(11):2838–2850 (in Chinese).
|
Agurto-Detzel H,Andreas R,Klaus B,Miller M,Iwamori H,Priestley K. 2014. Seismicity distribution in the vicinity of the Chile Triple Junction,Aysén Region,southern Chile[J]. J South Am Earth Sci,51:1–11. doi: 10.1016/j.jsames.2013.12.011
|
Assumpção M,Mei F,Andrés T,Julià J. 2013. Models of crustal thickness for South America from seismic refraction,receiver functions and surface wave tomography[J]. Tectonophysics,609:82–96. doi: 10.1016/j.tecto.2012.11.014
|
Bagherbandi M,Bai Y,Sjöberg L E,Tenzer R,Abrehdary M,Miranda S,Alcacer Sanchez J M. 2017. Effect of the lithospheric thermal state on the Moho interface:A case study in South America[J]. J South Am Earth Sci,76:198–207. doi: 10.1016/j.jsames.2017.02.010
|
Bangerth W, Dannberg J, Gassmoeller R, Heister T. 2020. ASPECT: Advanced solver for problems in Earth’s convection, user manual[BE/OL]. [2021-10-21]. https://www.math.clemson.edu/~heister/manual.pdf.
|
Bohm M,Lüth S,Echtler H,Bataille K,Group I W. 2002. The Southern Andes between 36° and 40° S latitude:Seismicity and average seismic velocities[J]. Tectonophysics,356(4):275–289. doi: 10.1016/S0040-1951(02)00399-2
|
Bondár I,Storchak D A. 2011. Improved location procedures at the International Seismological Centre[J]. Geophys J Int,186:1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x
|
Bourgois J,Michaud F. 2002. Comparison between the Chile and Mexico triple junction areas substantiates slab window development beneath northwestern Mexico during the past 12−10 Myr[J]. Earth Planet Sci Lett,201:35–44. doi: 10.1016/S0012-821X(02)00653-2
|
Breitsprecher K,Thorkelson D J. 2009. Neogene kinematic history of Nazca-Antarctic Phoenix slab windows beneath Patagonia and the Antarctic Peninsula[J]. Tectonophysics,464(1/2/3/4):10–20. doi: 10.1016/j.tecto.2008.02.013
|
Contreras-Reyes E,Flueh E R,Grevemeyer I. 2010. Tectonic control on sediment accretion and subduction off south central Chile:Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes[J]. Tectonics,29:1–27.
|
Eakin C M,Obrebski M,Allen R M,Boyarko D C,Brudzinski M R,Porritt R. 2010. Seismic anisotropy beneath Cascadia and the Mendocino triple junction:Interaction of the subducting slab with mantle flow[J]. Earth Planet Sci Lett,297:627–632. doi: 10.1016/j.jpgl.2010.07.015
|
Fraters M,Thieulot C,van den Berg A,Spakman W. 2019. The geodynamic world builder:A solution for complex initial conditions in numerical modeling[J]. Solid Earth,(10):1785–1807.
|
Gleason G C,Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics,247(1/2/3/4):1–23. doi: 10.1016/0040-1951(95)00011-B
|
Goddard A,Fosdick J C. 2019. Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern patagonia[J]. Geology,47(6):555–558. doi: 10.1130/G46091.1
|
Gresho P M,Lee R L,Sani R L,Maslanik M K,Eaton B E. 1987. The consistent Galerkin FEM for computing derived boundary quantities in thermal and/or fluids problems[J]. Int J Numer Meth Fl,7(4):371–394.
|
Guo C,Sun P,Wei D. 2021. Numerical simulation of the effects of wedge subduction on the lithospheric thermal structure and the seismogenic zone south of Chile Triple Junction[J]. Front Earth Sci,9:782458. doi: 10.3389/feart.2021.782458
|
Hamza V M,Dias F,Gomes A,Terceros Z. 2005. Numerical and functional representations of regional heat flow in South America[J]. Phys Earth Planet Inter,152:223–56. doi: 10.1016/j.pepi.2005.04.009
|
Heister T,Dannberg J,Gassmöller R,Bangerth W. 2017. High accuracy mantle convection simulation through modern numerical methods,II:Realistic models and problems[J]. Geophys J Int,210(2):833–851. doi: 10.1093/gji/ggx195
|
Hirth G, Kohlstedt D. 2004. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists[C]// Geophysical Monograph Series. Washington D. C.: American Geophysical Union: 83–105.
|
Kirby S, Engdahl E R, Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs[C]// Geophysical Monograph Series. Washington D C: American Geophysical Union: 195–214.
|
Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R. 2006. Long-Term Signals in the Present-Day Deformation Field of the Central and Southern Andes and Constraints on the Viscosity of the Earth’s Upper Mantle[M]. Berlin: Springer: 65–89.
|
Kronbichler M,Heister T,Bangerth W. 2012. High Accuracy mantle convection simulation through modern numerical methods[J]. Geophys J Int,191(1):12–29. doi: 10.1111/j.1365-246X.2012.05609.x
|
Lagabrielle Y,Christèle G,René C M,Bourgois J,Martin H. 2000. Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction:The Chile Triple Junction model[J]. Tectonophysics,326:255–268. doi: 10.1016/S0040-1951(00)00124-4
|
Lange D,Rietbrock A,Haberland C,Bataille K,Dahm T,Tilmann F,Flüh E R. 2007. Seismicity and geometry of the south Chilean subduction zone (41.5°S—43.5°S):Implications for controlling parameters[J]. Geophys Res Lett,34:L06311.
|
Lucazeau F. 2019. Analysis and mapping of an updated terrestrial heat flow data set[J]. Geochem Geophys Geosyst,20(8):4001–4024. doi: 10.1029/2019GC008389
|
Maksymowicz A,Eduardo C,Ingo G,Flueh E. 2012. Structure and geodynamics of the post-collision zone between the Nazca–Antarctic spreading center and South America[J]. Earth Planet Sci Lett,345-348:27–37.
|
Murdie R E,Prioe D J,Styles P,Flint S S,Agar S M. 1993. Seismic response to ridge-transform subduction:Chile triple junction[J]. Geology,21:1095–1098.
|
Naliboff J,Buiter S J H. 2015. Rift reactivation and migration during multiphase extension[J]. Earth Planet Sci Lett,421:58–67. doi: 10.1016/j.jpgl.2015.03.050
|
Oleskevich D A,Hyndman R D,Wang K. 1999. The updip and downdip limits to great subduction earthquakes:Thermal and structural models of Cascadia,south Alaska,SW Japan,and Chile[J]. J Geophys Res:Solid Earth,104:14965–14991. doi: 10.1029/1999JB900060
|
Richards F D,Hoggard M J,Cowton L R,White N J. 2018. Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements[J]. J Geophys Res:Solid Earth,123:9136–9161. doi: 10.1029/2018JB015998
|
Rose I,Buffett B,Heister T. 2017. Stability and accuracy of free surface time integration in viscous flows[J]. Phys Earth Planet Inter,262:90–100. doi: 10.1016/j.pepi.2016.11.007
|
Rybacki E. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates[J]. J Geophys Res:Solid Earth,200-201:1–9.
|
Scherwath M,Flueh E,Grevemeyer I,Tillman F,Contreras-Reyes E,Weinrebe W. 2006. Investigating subduction zone processes in Chile[J]. Eos Trans Am Geophys Un,87(27):265–272.
|
Scherwath M,Contreras-Reyes E,Flueh E R,Grevemeyer I,Krabbenhoeft A,Papenberg C,Petersen C J,Weinrebe R W. 2009. Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modelling[J]. Geophys J Int,179:579–600. doi: 10.1111/j.1365-246X.2009.04298.x
|
Shi Y,Wei D,Li Z,Liu M Q,Liu M. 2018. Subduction mode selection during slab and mantle transition zone interaction:Numerical modeling[J]. Pure Appl Geophys,175(2):529–548. doi: 10.1007/s00024-017-1762-0,175(2):529—548
|
Simmons N A,Forte A M,Boschi L,Grand S P. 2010. GyPSuM:A joint tomographic model of mantle density and seismic wave speeds[J]. J Geophys Res,115:B12310. doi: 10.1029/2010JB007631
|
Sisson V B,Pavlis T L,Roeske S M,Thorkelson D J. 2003. Introduction:An overview of ridge-trench interactions in modern and ancient settings[J]. Geol Soc Am Spec Papers,371:1–18.
|
Stein C A,Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature,359(6391):123–129. doi: 10.1038/359123a0
|
Storchak D A,Harris J,Brown L,Lieser K,Shumba B,Verney R,Giacomo D D,Korger E I M. 2017. Rebuild of the bulletin of the International Seismological Centre (ISC),part 1:1964–1979[J]. Geosci Lett,4:32. doi: 10.1186/s40562-017-0098-z
|
Storchak D A,Harris J,Brown L,Lieser K,Shumba B,Di Giacomo D. 2020. Rebuild of the bulletin of the International Seismological Centre (ISC),part 2:1980–2010[J]. Geosci Lett,7:18. doi: 10.1186/s40562-020-00164-6
|
Tebbens S F,Cande S C,Kovacs L,Parra,J C,LaBrecque J L,Vergara H. 1997. The Chile ridge:A tectonic framework[J]. J Geophys Res:Solid Earth,102:12035–12059. doi: 10.1029/96JB02581
|
Tichelaar B W,Ruff L J. 1991. Seismic coupling along the Chilean subduction zone[J]. J Geophys Res,96(B7):11997. doi: 10.1029/91JB00200
|
Tetreault J L,Buiter S J H. 2012. Geodynamic models of terrane accretion:Testing the fate of island arcs,oceanic plateaus,and continental fragments in subduction zones[J]. J Geophys Res:Solid Earth,117(B8):B08403.
|
van der Hilst R,Hoop M. 2005. Banana-doughnut kernels and mantle tomography[J]. Geophys J Int,163:956–961. doi: 10.1111/j.1365-246X.2005.02817.x
|
Völker D,Ingo G,Michael S,Wang K,He J. 2011. Thermal control of the seismogenic zone of southern central Chile[J]. J Geophys Res,116:1–20.
|
Wei D, Seno T, 1998. Determination of the Amurian plate motion[C]// Mantle Dynamics and Plate Interactions in East Asia: Geodynamics Series. San Francisco: AGU: 337–346.
|
Wilks K R,Carter N L. 1990. Rheology of some continental lower crustal rocks[J]. Tectonophysics,182(1/2):57–77. doi: 10.1016/0040-1951(90)90342-6
|
Zhang K,Wei D. 2012. Correlation between plate age and layer separation of double seismic zones[J]. Earthquake Science,25:95–101. doi: 10.1007/s11589-012-0835-5
|