Li J H,Zhu A Y,Cui G L,Li Y C. 2025. Geothermal extraction efficiency of dry hot rock based on a fully coupled thermo-hydro-mechanical model:Taking the GR1 well in Gonghe,Qinghai as an example. Acta Seismologica Sinica47(2):200−220. DOI: 10.11939/jass.20240023
Citation: Li J H,Zhu A Y,Cui G L,Li Y C. 2025. Geothermal extraction efficiency of dry hot rock based on a fully coupled thermo-hydro-mechanical model:Taking the GR1 well in Gonghe,Qinghai as an example. Acta Seismologica Sinica47(2):200−220. DOI: 10.11939/jass.20240023

Geothermal extraction efficiency of dry hot rock based on a fully coupled thermo-hydro-mechanical model:Taking the GR1 well in Gonghe,Qinghai as an example

More Information
  • Received Date: February 17, 2024
  • Revised Date: May 17, 2024
  • Accepted Date: May 19, 2024
  • Available Online: May 19, 2024
  • Developing deep dry hot rock resources is widely regarded as crucial for addressing China’s energy security issues and achieving its “dual carbon” goals. However, extracting this type of energy is a significant challenge due to its location in complex geological environments characterized by high temperature and high pressure. The mining process is intricately linked to the multifaceted interactions of seepage, mechanics, and temperature. Consequently, establishing a thermo-hydro-mechanical coupling model that incorporates various physical factors is essential for studying the interactions and impacts of enhanced geothermal systems (dry hot rock).

    This study introduces a fully coupled thermo-hydraulic-mechanical model designed toinvestigate the effects of permeability and fault characteristics on the efficiency of geothermal extraction in hot dry rock reservoirs. The model thoroughly considers the interactions among multiple physical fields, including: ① reservoir deformation caused by changes in fluid pressure and temperature; ② variation of porosity, permeability, and fracture openings due to reservoir deformation; ③ temperature-dependent fluid properties (e.g., density, viscosity); and ④ heat conduction resulting from fluid flow.

    The Gonghe Basin in Qinghai Province is known for its abundant hot dry rock resources, notably the GR1 hot dry rock exploration well, which has the highest temperature recorded for hot dry rock drilled in China. This paper uses the GR1 well as a case study to develop a three-dimensional numerical model that examines how reservoir permeability and fault characteristics affect geothermal extraction efficiency in different production modes, specifically constant pressure and constant injection rate production. Additionally, we analyzed the combined effects of these factors on production efficiency and operational safety.

    The research findings indicate:

    1) In the constant pressure production mode, low-permeability reservoirs and barrier-type faults significantly reduce geothermal extraction efficiency. These features impede fluid flow, reducing the rate between injection and production wells and diminishing the overall energy output. While increasing reservoir permeability can boost geothermal extraction efficiency, however, simulations show that excessively high permeability can lead to rapid resource depletion within a short period, preventing full utilization and causing resource wastage, which is detrimental to sustainable exploitation. Therefore, it is vital to strike a balance between permeability enhancement for improved efficiency and sustainable resource management to avoid the swift exhaustion of geothermal reservoirs.

    2) In the constant flow rate production mode, geological factors such as reservoir permeability and fault type have minimal impact on geothermal extraction efficiency. Since the flow rate is kept constant, the primary determinants of extraction efficiency are the water injection and production rates.

    3) From a safety perspective, in the constant flow rate production mode, low reservoir permeability or barrier-type faults can substantially increase pore pressure response. This condition may lead to casing deformation and damage and could even trigger seismic events, posing construction safety risks.

    4) For the enhanced geothermal systems in the Gonghe region of Qinghai, it is recommended to balance heat extraction efficiency with construction safety. In the constant pressure production mode, it is advisable to adjust the reservoir permeability to a range of 1×10−13 m2 to 1×10−12 m2 to strike a balance between heat extraction efficiency and resource sustainability. In the constant flow rate production mode, adjusting reservoir permeability to above 1×10−12 m2 is suggested to prevent excessive pore pressure from building up within the reservoir. In addition to modifying the reservoir permeability, it is also crucial to avoid barrier-type faults between the injection and production wells.

  • 崔翰博,唐巨鹏,姜昕彤. 2020a. 渗透率对干热岩开采过程储层变化规律的影响[J]. 水文地质工程地质,47(1):171–180.
    Cui H B,Tang J P,Jiang X T. 2020a. Influence of permeability on reservoir change during dry hot rock mining[J]. Hydrogeology &Engineering Geology,47(1):171–180 (in Chinese).
    崔翰博,唐巨鹏,姜昕彤. 2020b. 水流损失和热补偿共同作用对增强型地热系统(EGS)产能影响的研究[J]. 应用力学学报,37(1):200–208.
    Cui H B,Tang J P,Jiang X T. 2020b. Influence of water flow loss and thermal compensation on enhanced geothermal system (EGS) production capacity[J]. Chinese Journal of Applied Mechanics,37(1):200–208 (in Chinese).
    丁军锋,王世民. 2019. 增强型地热系统的多区域多物理场耦合三维数值模拟[J]. 中国科学院大学学报,36(5):694–701. doi: 10.7523/j.issn.2095-6134.2019.05.015
    Ding J F,Wang S M. 2019. Multi-region and multi-physics coupled 3D numerical simulation of enhanced geothermal system[J]. Journal of University of Chinese Academy of Sciences,36(5):694–701 (in Chinese).
    段云星,杨浩. 2020. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版),50(4):1161–1172.
    Duan Y X,Yang H. 2020. Analysis of influencing factors on heat extraction performance of enhanced geothermal system[J]. Journal of Jilin University (Earth Science Edition),50(4):1161–1172 (in Chinese).
    高坤. 2020. 干热岩开采裂隙储层THM耦合模型和应用[D]. 徐州:中国矿业大学:23−38.
    Gao K. 2020. THM Coupling Model of Fractured Reservoir in Hot Dry Rock Mining and Its Application[D]. Xuzhou:China University of Mining and Technology:23−38 (in Chinese).
    高平. 2015. 岩石热物性参数分析及多场热效应耦合模型研究[D]. 长春:吉林大学:112−116.
    Gao P. 2015. Analysis of Rock Thermal Physical Parameters and Research on Multi-Field Thermal Effect Coupled Model[D]. Changchun:Jilin University:112−116 (in Chinese).
    胡剑,苏正,吴能友,翟海珍,曾玉超. 2014. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理学进展,29(3):1391–1398. doi: 10.6038/pg20140354
    Hu J,Su Z,Wu N Y,Zhai H Z,Zeng Y C. 2014. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System[J]. Progress in Geophysics,29(3):1391–1398 (in Chinese).
    蔺文静,刘志明,马峰,刘春雷,王贵玲. 2012. 我国陆区干热岩资源潜力估算[J]. 地球学报,33(5):807–811. doi: 10.3975/cagsb.2012.05.12
    Lin W J,Liu Z M,Ma F,Liu C L,Wang G L. 2012. An estimation of HDR resources in China’s mainland[J]. Acta Geoscientica Sinica,33(5):807–811 (in Chinese).
    蔺文静,刘志明,王婉丽,王贵玲. 2013. 中国地热资源及其潜力评估[J]. 中国地质,40(1):312–321. doi: 10.3969/j.issn.1000-3657.2013.01.021
    Lin W J,Liu Z M,Wang W L,Wang G L. 2013. The assessment of geothermal resources potential of China[J]. Geology in China,40(1):312–321 (in Chinese).
    刘汉青,胡才博,赵桂萍,石耀霖. 2023. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程—以青海共和盆地恰卜恰地区干热岩开发为例[J]. 地球物理学报,66(7):2887–2902.
    Liu H Q,Hu C B,Zhao G P,Shi Y L. 2023. Thermal-hydraulic finite element simulation of temperature decrease process during hot dry rock exploitation:A case study in the Qiabuqia area,Gonghe Basin,Qinghai Province[J]. Chinese Journal of Geophysics,66(7):2887–2902 (in Chinese).
    孙致学,徐轶,吕抒桓,徐杨,孙强,蔡明玉,姚军. 2016. 增强型地热系统热流固耦合模型及数值模拟[J]. 中国石油大学学报(自然科学版),40(6):109–117. doi: 10.3969/j.issn.1673-5005.2016.06.014
    Sun Z X,Xu Y,Lü S H,Xu Y,Sun Q,Cai M Y,Yao J. 2016. A thermo-hydro-mechanical coupling model for numerical simulation of enhanced geothermal systems[J]. Journal of China University of Petroleum,40(6):109–117 (in Chinese).
    唐志伟,米倡华,张学峰,刘爱洁. 2016. 增强型地热系统热固流耦合数值模拟与分析[J]. 北京工业大学学报,42(10):1560–1564. doi: 10.11936/bjutxb2016020014
    Tang Z W,Mi C H,Zhang X F,Liu A J. 2016. Numerical simulation and analysis of the coupled for heat-fluid-solid in enhanced geothermal systems[J]. Journal of Beijing University of Technology,42(10):1560–1564 (in Chinese).
    汪集旸,胡圣标,庞忠和,何丽娟,赵平,朱传庆,饶松,唐晓音,孔彦龙,罗璐,李卫卫. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,30(32):25–31. doi: 10.3981/j.issn.1000-7857.2012.32.002
    Wang J Y,Hu S B,Pang Z H,He L J,Zhao P,Zhu C Q,Rao S,Tang X Y,Kong Y L,Luo L,Li W W. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science Technology Review,30(32):25–31 (in Chinese).
    王晓星,吴能友,苏正,曾玉超. 2012. 增强型地热系统开发技术研究进展[J]. 地球物理学进展,27(1):355–362. doi: 10.6038/j.issn.1004-2903.2012.01.041
    Wang X X,Wu N Y,Su Z,Zeng Y C. 2012. Progress of the enhanced geothermal systems (EGS) development technology[J]. Progress in Geophysics,27(1):355–362 (in Chinese).
    许天福,袁益龙,姜振蛟,侯兆云,冯波. 2016. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版),46(4):1139–1152.
    Xu T F,Yuan Y L,Jiang Z J,Hou Z Y,Feng B. 2016. Hot dry rock and enhanced geothermal engineering:International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition),46(4):1139–1152 (in Chinese).
    严维德. 2015. 共和盆地干热岩特征及利用前景[J]. 科技导报,33(19):54–57.
    Yan W D. 2015. Characteristics of Gonghe Basin hot dry rock and its utilization prospects[J]. Science Technology Review,33(19):54–57 (in Chinese).
    张超,张盛生,李胜涛,贾小丰,姜光政,高堋,王一波,胡圣标. 2018. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报,61(11):4545–4557. doi: 10.6038/cjg2018L0747
    Zhang C,Zhang S S,Li S T,Jia X F,Jiang G Z,Gao P,Wang Y B,Hu S B. 2018. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe basin,northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,61(11):4545–4557 (in Chinese).
    张森琦,严维德,黎敦朋,贾小丰,张盛生,李胜涛,付雷,吴海东,曾昭发,李志伟,穆建强,程正璞,胡丽莎. 2018. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质,45(6):1087–1102. doi: 10.12029/gc20180601
    Zhang S Q,Yan W D,Li D P,Jia X F,Zhang S S,Li S T,Fu L,Wu H D,Zeng Z F,Li Z W,Mu J Q,Cheng Z P,Hu L S. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin,Qinghai Province[J]. Geology in China,45(6):1087–1102 (in Chinese).
    张森琦,吴海东,张杨,宋健,张林友,许伟林,黎敦朋,李胜涛,贾小丰,付雷,李旭峰,冯庆达. 2020. 青海省贵德县热水泉干热岩体地质-地热地质特征[J]. 地质学报,94(5):1591–1605. doi: 10.3969/j.issn.0001-5717.2020.05.017
    Zhang S Q,Wu H D,Zhang Y,Song J,Zhang L Y,Xu W L,Li D P,Li S T,Jia X F,Fu L,Li X F,Feng Q D. 2020. Characteristics of regional and geothermal geology of the Reshuiquan HDR in Guide County,Qinghai Province[J]. Acta Geologica Sinica,94(5):1591–1605 (in Chinese). doi: 10.1111/1755-6724.14324
    Aliyu M D,Archer R A. 2021. Numerical simulation of multifracture HDR geothermal reservoirs[J]. Renew Energ,164:541–555. doi: 10.1016/j.renene.2020.09.085
    Faoro I,Niemeijer A,Marone C,Elsworth D. 2009. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock[J]. J Geophys Res:Solid Earth,114(B1):B01201.
    Fox D B,Sutter D,Beckers K F,Lukawski M Z,Koch D L,Anderson B J,Tester J W. 2013. Sustainable heat farming:Modeling extraction and recovery in discretely fractured geothermal reservoirs[J]. Geothermics,46:42–54. doi: 10.1016/j.geothermics.2012.09.001
    Gaucher E,Schoenball M,Heidbach O,Zang A,Fokker P A,van Wees J D,Kohl T. 2015. Induced seismicity in geothermal reservoirs:A review of forecasting approaches[J]. Renew Sust Energ Rev,52:1473–1490. doi: 10.1016/j.rser.2015.08.026
    Guo T K,Gong F C,Wang X Z,Lin Q,Qu Z Q,Zhang W. 2019. Performance of enhanced geothermal system (EGS) in fractured geothermal reservoirs with CO2 as working fluid[J]. Appl Therm Eng,152:215–230. doi: 10.1016/j.applthermaleng.2019.02.024
    Han S C,Cheng Y F,Gao Q,Yan C L,Zhang J C. 2020. Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System[J]. Renew Energ,149:1214–1226. doi: 10.1016/j.renene.2019.10.114
    Izadi G,Elsworth D. 2015. The influence of thermal-hydraulic-mechanical- and chemical effects on the evolution of permeability,seismicity and heat production in geothermal reservoirs[J]. Geothermics,53:385–395. doi: 10.1016/j.geothermics.2014.08.005
    Jacquey A B,Cacace M,Blöcher G,Watanabe N,Huenges E,Scheck-Wenderoth M. 2016. Thermo-poroelastic numerical modelling for enhanced geothermal system performance:Case study of the Groß Schönebeck reservoir[J]. Tectonophysics,684:119–130. doi: 10.1016/j.tecto.2015.12.020
    Kumari W G P,Ranjith P G. 2019. Sustainable development of enhanced geothermal systems based on geotechnical research:A review[J]. Earth-Sci Rev,199:102955. doi: 10.1016/j.earscirev.2019.102955
    Li J W,Sun Z X,Zhang Y,Jiang C Y,Cherubini C,Scheuermann A,Torres S A G,Li L. 2019. Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network[J]. Energy,189:116184. doi: 10.1016/j.energy.2019.116184
    Liu G,Zhou C W,Rao Z H,Liao S M. 2021. Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems[J]. Renew Energ,171:492–504. doi: 10.1016/j.renene.2021.02.070
    Lockner D,Naka H,Tanaka H,Ito H,Ikeda R. 2000. Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake[C]//Proceedings of the International Workshop on the Nojima Fault Core and Borehole Data Analysis. Tsukuba,Japan:US Geol. Sur:147−152.
    Ma Y Y,Li S B,Zhang L G,Liu S Z,Liu Z Y,Li H,Shi E X,Zhang H J. 2020. Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system[J]. Renew Energ,151:782–795. doi: 10.1016/j.renene.2019.11.067
    Mizoguchi K,Hirose T,Shimamoto T,Fukuyama E. 2008. Internal structure and permeability of the Nojima fault,southwest Japan[J]. J Struct Geol,30(4):513–524. doi: 10.1016/j.jsg.2007.12.002
    Pandey S N,Chaudhuri A,Kelkar S. 2017. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir[J]. Geothermics,65:17–31. doi: 10.1016/j.geothermics.2016.08.006
    Rathnaweera T D,Wu W,Ji Y L,Gamage R P. 2020. Understanding injection-induced seismicity in enhanced geothermal systems:From the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction[J]. Earth-Sci Rev,205:103182. doi: 10.1016/j.earscirev.2020.103182
    Rutqvist J. 2017. An overview of TOUGH-based geomechanics models[J]. Comput Geosci,108:56–63. doi: 10.1016/j.cageo.2016.09.007
    Shaik A R,Rahman S S,Tran N H,Tran T. 2011. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system[J]. Appl Therm Eng,31(10):1600–1606. doi: 10.1016/j.applthermaleng.2011.01.038
    Xu P,Yu B M. 2008. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Adv Water Resour,31(1):74–81. doi: 10.1016/j.advwatres.2007.06.003
    Yao J,Zhang X,Sun Z X,Huang Z Q,Liu J R,Li Y,Xin Y,Yan X,Liu W Z. 2018. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Geothermics,74:19–34. doi: 10.1016/j.geothermics.2017.12.005
    Zang A,Oye V,Jousset P,Deichmann N,Gritto R,McGarr A,Majer E,Bruhn D. 2014. Analysis of induced seismicity in geothermal reservoirs:An overview[J]. Geothermics,52:6–21. doi: 10.1016/j.geothermics.2014.06.005
    Zhang C,Jiang G Z,Jia X F,Li S T,Zhang S S,Hu D,Hu S B,Wang Y B. 2019a. Parametric study of the production performance of an enhanced geothermal system:A case study at the Qiabuqia geothermal area,northeast Tibetan Plateau[J]. Renew Energ,132:959–978. doi: 10.1016/j.renene.2018.08.061
    Zhang C,Wang X G,Jiang C Y,Zhang H Z. 2023. Numerical simulation of geothermal energy production from hot dry rocks under the interplay between the heterogeneous fracture and stimulated reservoir volume[J]. J Cleaner Prod,414:137724. doi: 10.1016/j.jclepro.2023.137724
    Zhang J,Xie J X,Zhang H. 2019b. Production capacity and mining plan optimization of fault/fracture‐controlled EGS model in Gonghe Basin[J]. Energ Sci Eng,7(6):2966–2983. doi: 10.1002/ese3.473
    Zhao Y S,Feng Z J,Feng Z C,Yang D,Liang W G. 2015. THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000−7000 M[J]. Energy,82:193–205. doi: 10.1016/j.energy.2015.01.030
  • Related Articles

Catalog

    Article views (403) PDF downloads (163) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return