Zhao J X,Ba Z N,Kuo C Y,Liu B J. 2023. Broadband ground motion simulations applied to the Luding MS6.8 earthquake on September 5,2022 based on spectral element method. Acta Seismologica Sinica45(2):179−195. DOI: 10.11939/jass.20220190
Citation: Zhao J X,Ba Z N,Kuo C Y,Liu B J. 2023. Broadband ground motion simulations applied to the Luding MS6.8 earthquake on September 5,2022 based on spectral element method. Acta Seismologica Sinica45(2):179−195. DOI: 10.11939/jass.20220190

Broadband ground motion simulations applied to the Luding MS6.8 earthquake on September 5,2022 based on spectral element method

More Information
  • Received Date: October 08, 2022
  • Revised Date: December 06, 2022
  • Available Online: March 09, 2023
  • Published Date: March 14, 2023
  • At 12:52 on September 5, 2022, a MS6.8 earthquake occurred in Luding County, Garze Prefecture, Sichuan Province. The earthquake caused severe damage and heavy casualties in Luding County and its surrounding areas. In order to reproduce the ground motion influence field of the earthquake and analyze the spatial distribution characteristics of near-field ground motion, the deterministic asperity source model is combined with the random source model to obtain the kinematic hybrid source model. Then, the hybrid source model is implemented into the SPECFEM 3D, and the whole-process broadband (0.1−5 Hz) ground motion simulation based on the spectral element method and kinematic hybrid source model is realized. The results from the simulation of Luding earthquake are as follows. Firstly, the simulation results are compared with the time history records of six stations, the corresponding response spectra and the NGA-West2 ground motion attenuation curves to test the applicability of the method. Secondly, the three-component velocity wavefield snapshots of the earthquake is given to demonstrate the directional effect and local site effect of the near field when the seismic wave propagates. Finally, the peak acceleration (PGA) and peak velocity (PGV) maps of the ground motion in the range of 100 km×100 km centered on the Luding area are given, and the spatial distribution characteristics of the ground motion in the near field region for the Luding earthquake are analyzed. Based on the simulation results, the seismic intensity distribution map is given. The results show that the epicenter PGA and PGV is close to 600 cm/s2 and 50 cm/s, respectively, and the seismic intensity reaches Ⅸ degree. Due to the influence of mountain-canyon topography in Luding area on the ground motion, the peak of ground motion is significantly amplified at the top of the mountain and the bottom of the canyon, with the amplification of PGA and PGV of 1.9 times and 1.5 times, respectively. The amplification of PGA and PGV at the bottom of the canyon is 1.7 times and 1.4 times. Therefore, attention should be paid to the phenomenon of earthquake amplification and possible secondary geological disasters in mountain-canyon region.
  • 国家市场监督管理总局, 中国国家标准化管理委员会. 2020. GB/T 17742—2020中国地震烈度表[S]. 北京: 中国标准出版社: 8–10.
    State Administration of Market Supervision and Administration, China National Standardization Management Committee. 2020. GB/T 17742−2020 The Chinese Seismic Intensity Standard[S]. Beijing: Standards Press of China: 8–10 (in Chinese).
    曹泽林. 2020. 基于FK法的三分量宽频带强地震动场合成[D]. 哈尔滨: 哈尔滨工业大学: 37–58.
    Cao Z L. 2020. Synthesis of Three-Component Broadband Strong Ground Motion Field Based on FK Approach[D]. Harbin: Harbin Institute of Technology: 37–58 (in Chinese).
    姜伟,陶夏新,陶正如,曹泽林,王立媛. 2017. 有限断层震源模型局部参数定标律[J]. 地震工程与工程振动,37(6):23–30. doi: 10.13197/j.eeev.2017.06.23.jiangw.003
    Jiang W,Tao X X,Tao Z R,Cao Z L,Wang L Y. 2017. Scaling laws of local parameters of finite fault source model[J]. Earthquake Engineering and Engineering Dynamics,37(6):23–30 (in Chinese).
    李孝波,薄景山,齐文浩,王熠琛,阮璠. 2014. 地震动模拟中的谱元法[J]. 地球物理学进展,29(5):2029–2039.
    Li X B,BO J S,QI W H,Wang Y C,Ruan F. 2014. Spectral element method in seismic ground motion simulation[J]. Progress in Geophysics,29(5):2029–2039 (in Chinese).
    李建有,石宝文,徐晓雅,胡家富. 2018. 利用远震接收函数探测四川盆地及周边地区的地壳结构[J]. 地球物理学报,61(7):2719–2735.
    Li J Y,Shi B W,Xu X Y,Hu J F. 2018. Crustal structure beneath the Sichuan basin and adjacent region revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics,61(7):2719–2735 (in Chinese).
    李传友,孙凯,马骏,李俊杰,梁明剑,房立华. 2022. 四川泸定6.8级地震:鲜水河断裂带磨西段局部发起、全段参与的一次复杂事件[J]. 地震地质,44(6):1648–1666.
    Li C Y,Sun K,Ma J,Li J J,Liang M J,Fang L H. 2022. The 2022 M6.8 Luding earthquake:A complicated event by faulting of the Moxi segment of the Xianshuihe fault zone[J]. Seismology and Geology,44(6):1648–1666 (in Chinese).
    铁永波,张宪政,卢佳燕,梁京涛,王东辉,马志刚,李宗亮,鲁拓,石胜伟,刘民生,巴仁基,何龙江,张新克,甘伟,陈凯,高延超,白永健,龚凌枫,曾孝文,徐伟. 2022. 四川省泸定县MS6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质,49(6):1–12.
    Tie Y B,Zhang X Z,Lu J Y,Liang J T,Wang D H,Ma Z G,Li Z L,Lu T,Shi S W,Liu M S,Ba R J,He L J,Zhang X K,Gan W,Chen K,Gao Y C,Bai Y J,Gong L F,Zeng X W,Xu W. 2022. Characteristics of geological hazards and it’s mitigations of the MS6.8 earthquake in Luding county,Sichuan Province[J]. Hydrogeology &Engineering Geology,49(6):1–12 (in Chinese).
    王海云. 2004. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨: 中国地震局工程力学研究所: 39–62.
    Wang H Y. 2004. Finite Fault Source Model for Predicting Near-Field Strong Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 39–62 (in Chinese).
    闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征[J]. 地震地质,22(3):239–249. doi: 10.3969/j.issn.0253-4967.2000.03.005
    Wen X Z. 2000. Character of rupture segmentation of Xianshuihe-Anninghe-Zemuhe fault zone,western Sichuan[J]. Seismology and Geology,22(3):239–249 (in Chinese).
    谢志南,章旭斌. 2017. 弱形式时域完美匹配层[J]. 地球物理学报,60(10):3823–3831. doi: 10.6038/cjg20171012
    Xie Z N,Zhang X B. 2017. Weak-form time-domain perfectly matched layer[J]. Chinese Journal of Geophysics,60(10):3823–3831 (in Chinese).
    应急管理部. 2022. 应急管理部发布四川泸定6.8级地震烈度图[EB/OL]. [2022-09-11]. https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml.
    Ministry of Emergency Management. 2022. The Ministry of Emergency Management issued the Sichuan Luding 6.8 earthquake intensity map[EB/OL]. [2022-09-11]. https://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml (in Chinese)
    中国地震台网中心. 2022a. 2022年9月5日四川泸定6.8级地震专题: 基础信息[EB/OL]. [2022-09-06]. https://data.earthquake.cn/20220905scld/index.html.
    China Earthquake Networks Center. 2022a. September 5, 2022, Sichuan Luding 6.8 earthquake topic: Basic information[EB/OL]. [2022-09-06]. https://data.earthquake.cn/20220905scld/index.html (in Chinese).
    中国地震台网中心. 2022b. 2022年9月5日四川泸定6.8级地震专题: 余震信息[EB/OL]. [2022-09-15]. https://data.earthquake.cn/gxdt/info/2022/334669424.html.
    China Earthquake Networks Center. 2022b. September 5, 2022, Sichuan Luding 6.8 earthquake topic: Aftershock information[EB/OL]. [2022-09-15]. https://data.earthquake.cn/gxdt/info/2022/334669424.html (in Chinese).
    中国新闻网. 2022. 2022年9月5日四川泸定地震遇难人数[EB/OL]. [2022-09-11]. https://www.chinanews.com.cn/gn/2022/09/11/9848234.shtml.
    Chinanews. 2022. The number of victims of the earthquake in Luding, Sichuan Province, Sept 5, 2022[EB/OL]. [2022-09-11]. https://www.chinanews.com.cn/gn/2022/09/11/9848234.shtml (in Chinese).
    Andrews D J. 1981. A stochastic fault model:2. Time-dependent case[J]. J Geophys Res,86(B11):10821–10834. doi: 10.1029/JB086iB11p10821
    Day S M, Bradley C R. 2001. Memory-efficient simulation of anelastic wave propagation[J]. Bull Seismol Soc Am, 91(3): 520–531.
    Dangkua D T,Rong Y,Magistrale H. 2018. Evaluation of NGA-West2 and Chinese ground-motion prediction equations for developing seismic hazard maps of mainland China[J]. Bull Seismol Soc Am,108(5A):2422–2443. doi: 10.1785/0120170186
    Fu H H, He C H, Chen B W, Yin Z K, Zhang Z G, Zhang W Q, Zhang T J, Xue W, Liu W G, Yin W W, Yang G W, Chen X F. 2017. Nonlinear earthquake simulation on Sunway TaihuLight: Enabling depiction of 18-Hz and 8-meter scenarios[C]//Proceedings of the International Conference for High Performance Computing. New York: Association for Computing Machinery: 1–2.
    Graves R W,Pitarka A. 2010. Broadband ground-motion simulation using a hybrid approach[J]. Bull Seismol Soc Am,100(5A):2095–2123.
    Graves R W,Pitarka A. 2015. Refinements to the Graves and Pitarka (2010) broadband ground-motion simulation method[J]. Seismol Res Lett,86(1):75–80. doi: 10.1785/0220140101
    Haskell N A. 1964. Total energy and energy spectral density of elastic wave radiation from propagating faults[J]. Bull Seismol Soc Am,54(6A):1811–1841. doi: 10.1785/BSSA05406A1811
    Heinecke A, Breuer A, Rettenberger S, Bader M, Gabriel A A, Pelties C, Bode A, Barth W, Liao X K, Vaidyanathan K, Smelyanskiy M, Dubey P. 2014. Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and AnalysisSC '14). Piscataway, NJ: IEEE Press: 3–14.
    Hu Z F,Olsen K B,Day S M. 2022. 0–5 Hz deterministic 3-D ground motion simulations for the 2014 La Habra,California,earthquake[J]. Geophys J Int,230(3):2162–2182. doi: 10.1093/gji/ggac174
    Irikura K,Miyake H. 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios[J]. Pure Appl Geophys,168:85–104.
    Ma J, Zhou B G, Wang M M, Guo P, Liu J R, Ha G H, Fan J. 2022. Surface rupture and slip distribution along the Zheduotang fault in the Kangding section of the Xianshuihe fault zone[J]. Lithosphere, (Special 2): 6500707.
    Mai P M,Beroza G C. 2002. A spatial random field model to characterize complexity in earthquake slip[J]. J Geophys Res,107(B11):10–21.
    Pitarka A,Akinci A,Gori D P,Buttinelli M. 2021. Deterministic 3D ground‐motion simulations (0−5 Hz) and surface topography effects of the 30 October 2016 MW6.5 Norcia,Italy earthquake[J]. Bull Seismol Soc Am,112(1):262–286.
    Rodgers A J,Petersson N A,Pitarka A,McCallen D B,Sjogreen B,Abrahamson N. 2019. Broadband (0−5 Hz) fully deterministic 3D ground-motion simulations of a magnitude 7.0 Hayward fault earthquake:Comparison with empirical groundmotion models and 3D path and site effects from source normalized intensities[J]. Seismol Res Lett,90(3):1268–1284.
    Rodgers A J,Pitarka A,Pankajakshan R,Sjögreen B,Petersson N A. 2020. Regional-scale 3D ground-motion simulations of MW7 earthquakes on the Hayward fault,northern California resolving frequencies 0−10 Hz and including site‐response corrections[J]. Bull Seismol Soc Am,110(6):2862–2881. doi: 10.1785/0120200147
    Touhami S,Gatti F,Lopez-Caballero F,Cottereau F,Corrêa A L,Aubry L,Clouteau D. 2022. SEM3D:A 3D high-fidelity numerical earthquake simulator for broadband (0−10 Hz) seismic response prediction at a regional scale[J]. Geosci J,12(3):112. doi: 10.3390/geosciences12030112
    Wang M,Shen Z. 2020. Present day crustal deformation of continental china derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):2019JB018774.
    Wen X Z,Ma S L,Xu X W,He Y N. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block,southwestern China[J]. Phys Earth Planet Inter,168(1/2):16–36.
    Xiao X,Cheng S H,Wu J P,Wang W L,Sun L,Wang X X,Wen L X. 2021. Shallow seismic structure beneath the continental China revealed by P-wave polarization,Rayleigh wave ellipticity and receiver function[J]. Geophys J Inter,225(2):998–1019.
    Xin H L,Zhang H J,Kang M,He R Z,Gao L,Gao J. 2019. High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography[J]. Seismol Res Lett,90(1):229–241.
  • Related Articles

  • Cited by

    Periodical cited type(10)

    1. 高玲举,于磊,陈聪,刘祜,周俊杰,高爽,韩杰. 重力资料在二连盆地构造单元区划及断裂构造识别中的应用. 铀矿地质. 2024(04): 729-739 .
    2. 谢立洋,刘贺楠,段忠义. 山东聊城许营地区重磁场特征及其深部隐伏矿产预测分析. 陕西地质. 2024(02): 79-86 .
    3. 王润生,武斌,张海瑞,于嘉宾,董彦龙,郭国强,康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论. 物探与化探. 2023(02): 279-289 .
    4. 崔洋,康凤新,钟振楠,杨询昌,隋海波,赵强. 鲁西北平原地热热源机制的气体同位素约束. 地球学报. 2023(01): 93-106 .
    5. 周铭,段永红,檀玉娟,邱勇. 基于密集台阵的东濮凹陷中北段浅层速度结构. 地震地质. 2023(02): 517-535 .
    6. 吕丁友,杨海风,于海波,刘朋波,邓辉,张参. 渤海海域印支期逆冲推覆体系的分带性及其动力学成因机制. 石油与天然气地质. 2023(03): 720-734 .
    7. 高玲举,于磊,刘祜. 航磁资料在二连盆地构造区划及断裂体系识别中的应用. 铀矿地质. 2022(04): 771-780 .
    8. 曹艳玲,崔玉良,吴波,刘连,江海洋,崔素,王威,范振华. 山东临沂地区古生代复合热储成矿模式研究. 地质与勘探. 2021(05): 1136-1148 .
    9. 张建太,于磊,刘传朋,李兆营,王伟德,高玲举. 鲁西金刚石原生矿床区域重磁异常特征及深部地质构造背景. 地质学报. 2020(09): 2783-2795 .
    10. Lei Jiang,Lanbo Liu,Zhiping Xu,Xiaoguo Deng,Lipu Yang,Wei Xiong,Shunqiang Xu. Crustal density structure of the southern segment of the Liaocheng-Lankao fault, China. Geodesy and Geodynamics. 2019(05): 347-355 .

    Other cited types(3)

Catalog

    Article views (417) PDF downloads (176) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return