Citation: | An Q,Han X M,Bao W C,Zhai H,Zhao T S,Zhao X. 2024. Ambient noise and data quality analysis of strong motion stations in Inner Mongolia region. Acta Seismologica Sinica,46(3):490−501. DOI: 10.11939/jass.20220211 |
Along with the construction of the project of National Earthquake Intensity Rapid Reporting and Early Warning, Inner Mongolia has established 193 strong motion stations and a data center. This paper calculated the acceleration power spectral density (PSD) of countinous waveform records of the 193 stations in 2022 by using the power spectral probability density function (PDF). By drawing the distribution maps of PSD, power spectral PDF and RMS value of ambient noise in different frequency bands in different time-space with different-type accelerometers, the variation characteristics of ambient noise at the strong motion stations in our studied region is evaluated, and then the PSD anomalies are analyzed. Accordingly, the constructive suggestions are put forward for the anomaly detection and strong ground motion data processing. The results show that the diurnal difference in PSD of ambient noise at different stations with different seismometers mainly appears in the frequency band above 1 Hz, and the diurnal PSD difference in different regions differs largely. The ambient noise values in the data recorded by seismometers QA-2g, JS-A2 and TDA-33M at frequency 2 s show little change with space and direction, so we can get reliable anomalies from the observation data by monitoring the ambient noise at frequency 2 s. The change of ambient noise with high frequency band at strong ground stations mainly comes from the change in environmental noise, but the influence of instrument self-noise cannot be completely ignored. Anomalous strong ground data is mainly resulted from large zero point shift of accelerometers, accelerometer failure, pulse interference and incorrect system parameters. Therefore it is recommended to optimize the observation environment of the stations, further standardize the instrument installation and debugging, and to configure and review the JOPENS system parameter.
陈先兰. 2013. 汶川地震泉州台强震仪与地震仪的记录分析[J]. 大地测量与地球动力学,33(增刊):172–175.
|
Chen X L. 2013. Records analysis of strong-motion seismograph and seismograph of Wenchuan earthquake by Quanzhou seismostation[J]. Journal of Geodesy and Geodynamics,33(S1):172–175 (in Chinese).
|
丁莉莎,马洁美,齐军伟,谢剑波,廖一帆,卢子晋,叶世山,劳谦,吕仲杭. 2021. 利用背景噪声的分形方法监控台站观测系统运行状态[J]. 大地测量与地球动力学,41(4):436–440.
|
Ding L S,Ma J M,Qi J W,Xie J B,Liao Y F,Lu Z J,Ye S S,Lao Q,Lü Z H. 2021. Discussion on monitoring the operating state of seismic station observation system by using fractal method of background noise[J]. Journal of Geodesy and Geodynamics,41(4):436–440 (in Chinese).
|
葛洪魁,陈海潮,欧阳飚,杨微,张梅,袁松湧,王宝善. 2013. 流动地震观测背景噪声的台基响应[J]. 地球物理学报,56(3):857–868. doi: 10.6038/cjg20130315
|
Ge H K,Chen H C,Ouyang B,Yang W,Zhang M,Yuan S Y,Wang B S. 2013. Transportable seismometer response to seismic noise in vault[J]. Chinese Journal of Geophysics,56(3):857–868 (in Chinese).
|
黄玲珠,林彬华,王士成. 2017. 测震台网实时波形数据质量自动监控[J]. 华南地震,37(4):20–25.
|
Huang L Z,Lin B H,Wang S C. 2017. Automatic monitoring of real-time waveform data quality of seismic network[J]. South China Journal of Seismology,37(4):20–25 (in Chinese).
|
蒋长胜,刘瑞丰. 2016. 国家地震烈度速报与预警工程:测震台网的机遇与挑战[J]. 工程研究:跨学科视野中的工程,8(3):250–257.
|
Jiang C S,Liu R F. 2016. National Seismic Intensity Rapid Reporting and Early Warning Project:Opportunity and challenge of seismic network[J]. Journal of Engineering Studies,8(3):250–257 (in Chinese). doi: 10.3724/SP.J.1224.2016.00250
|
廖诗荣,陈绯雯. 2008. 应用概率密度函数方法自动处理地震台站勘选测试数据[J]. 华南地震,28(4):82–92. doi: 10.3969/j.issn.1001-8662.2008.04.010
|
Liao S R,Chen F W. 2008. Automated seismic noise processing for seismic site selection using probability density functions method[J]. South China Journal of Seismology,28(4):82–92 (in Chinese).
|
林彬华,金星,廖诗荣,李军,黄玲珠,朱耿青. 2015. 地震噪声异常实时监测[J]. 中国地震,31(2):281–289. doi: 10.3969/j.issn.1001-4683.2015.02.012
|
Lin B H,Jin X,Liao S R,Li J,Huang L Z,Zhu G Q. 2015. Real-time monitoring of abnormal seismic noise[J]. Earthquake Research in China,31(2):281–289 (in Chinese).
|
马小军,马禾青,李军,许晓庆,曾宪伟,罗国富. 2014. 青藏高原东北缘背景噪声特征分析[J]. 地震研究,37(4):607–613. doi: 10.3969/j.issn.1000-0666.2014.04.018
|
Ma X J,Ma H Q,Li J,Xu X Q,Zeng X W,Luo G F. 2014. Characteristic of ambient seismic noise of the northeastern margin of Tibetan Plateau[J]. Journal of Seismological Research,37(4):607–613 (in Chinese).
|
田原,瞿辰,王伟涛,于常青,李丽. 2020. 四川盐源盆地短周期密集台阵背景噪声分布特征分析[J]. 地球物理学报,63(6):2248–2261. doi: 10.6038/cjg2020N0063
|
Tian Y,Qu C,Wang W T,Yu C Q,Li L. 2020. Characteristics of the ambient noise distribution recorded by the dense seismic array in the Yanyuan Basin,Sichuan Province[J]. Chinese Journal of Geophysics,63(6):2248–2261 (in Chinese).
|
王奡,罗银河,吴树成,沈超,姜小欢,徐义贤. 2017. 西准噶尔地区地震背景噪声源分析[J]. 地球物理学报,60(4):1376–1388. doi: 10.6038/cjg20170412
|
Wang A,Luo Y H,Wu S C,Shen C,Jiang X H,Xu Y X. 2017. Source analysis of seismic ambient noise in the western Junggar area[J]. Chinese Journal of Geophysics,60(4):1376–1388 (in Chinese).
|
王鑫,张皓明,安全. 2018. 内蒙古地震烈度速报与预警工程基本站勘选仪器测试分析[J]. 防灾减灾学报,34(1):20–25.
|
Wang X,Zhang H M,An Q. 2018. Basic station selection and instrument analysis of Inner Mongolia Seismic Intensity Rapid Reporting and Early Warning Project[J]. Journal of Disaster Prevention and Reduction,34(1):20–25 (in Chinese).
|
谢江涛,林丽萍,赵敏,谌亮. 2021. 四川地区地震背景噪声特征分析[J]. 地震学报,43(5):533–550. doi: 10.11939/jass.20200148
|
Xie J T,Lin L P,Zhao M,Chen L. 2021. Characteristics of seismic ambient noise in Sichuan region[J]. Acta Seismologica Sinica,43(5):533–550 (in Chinese).
|
谢晓峰,杨微,李俊,林建民,王伟涛,姚琳,吕俊强. 2014. 宁夏及其邻区背景噪声能量来源方位及强度的季节性变化分析[J]. 地震地质,36(1):82–91.
|
Xie X F,Yang W,Li J,Lin J M,Wang W T,Yao L,Lü J Q. 2014. Analysis on the seasonal variation of the azimuth and strength of ambient noise energy in Ningxia and its adjacent region[J]. Seismology and Geology,36(1):80–89 (in Chinese).
|
杨千里,郝春月,田鑫. 2019. 新疆和田台阵PSD与PDF分析[J]. 地球物理学报,62(7):2591–2606. doi: 10.6038/cjg2019M0108
|
Yang Q L,Hao C Y,Tian X. 2019. Ambient noise analysis by the technology of PSD and PDF in Hotan seismic array[J]. Chinese Journal of Geophysics,62(7):2591–2606 (in Chinese).
|
于海英,周宝峰,王家行,马新生,张同宇,徐旋,胡振荣. 2017. 强震动观测仪器面临的机遇和挑战[J]. 震灾防御技术,12(1):68–77. doi: 10.11899/zzfy20170107
|
Yu H Y,Zhou B F,Wang J H,Ma X S,Zhang T Y,Xu X,Hu Z R. 2017. Opportunities and challenges of strong motion observation instruments[J]. Technology for Earthquake Disaster Prevention,12(1):68–77 (in Chinese).
|
张红才,金星,王士成,李军. 2017. 烈度仪记录与强震及测震记录的对比分析:以2015年河北昌黎ML4.5地震为例[J]. 地震学报,39(2):273–285. doi: 10.11939/jass.2017.02.010
|
Zhang H C,Jin X,Wang S C,Li J. 2017. Comparative analyses of records by seismic intensity instrument with strong ground motion records and seismograph stations records:Taking the ML4.5 Changli earthquake of Hebei Province for an example[J]. Acta Seismologica Sinica,39(2):273–285 (in Chinese).
|
赵国峰,高楠,杨大克. 2022. 国家地震烈度速报与预警工程建设进展[J]. 地震地磁观测与研究,43(3):165–171. doi: 10.3969/j.issn.1003-3246.2022.03.023
|
Zhao G F,Gao N,Yang D K. 2022. Construction progress of the National Seismic Intensity Rapid Reporting and Early Warning Project[J]. Seismological and Geomagnetic Observation and Research,43(3):165–171 (in Chinese).
|
Green D N,Bastow I D,Dashwood B,Nippress S E J. 2017. Characterizing broadband seismic noise in Central London[J]. Seismol Res Lett,88(1):113–124. doi: 10.1785/0220160128
|
McNamara D E,Buland R P. 2004. Ambient noise levels in the continental United States[J]. Bull Seismol Soc Am,94(4):1517–1527. doi: 10.1785/012003001
|
Peng C Y,Jiang P,Ma Q,Su J R,Cai Y C,Zheng Y. 2022. Chinese nationwide earthquake early warning system and its performance in the 2022 Lushan M6.1 earthquake[J]. Remote Sens,14(17):4269. doi: 10.3390/rs14174269
|
Peterson J. 1993. Observations and Modeling of Seismic Background Noise:USGS Open File Report[R]. Albuquerque,New Mexico:U.S. Department of Interior Geological Survey:93–322.
|
Rastin S J,Unsworth C P,Gledhill K R,Mcnamara D E. 2012. A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system[J]. Bull Seismol Soc Am,102(1):98–113. doi: 10.1785/0120110064
|