Citation: | Li H,Luo G C,Rong M S,Wang J X,Liu A Y,Kong X S. 2024. Empirical relationship between overburden thickness and natural frequency based on borehole data in Beijing region. Acta Seismologica Sinica,46(6):1063−1075. DOI: 10.11939/jass.20230077 |
The thickness of the site overburden layer has a significant impact on the distribution of earthquake damage. Moreover, studies have shown that when calculating the surface ground motion parameters, the uncertainty of the overburden layer thickness will lead to obvious differences for the calculation results. Therefore, giving the thickness of the site overburden layer in a scientific, reasonable and accurate manner can improve the accuracy of calculating the ground motion parameters and better estimate the earthquake damage. Traditionally, the overburden layer thickness is obtained by borehole drilling. However, borehole drilling is expensive, time-consuming and unfriendly to the ecological environment. In order to obtain the thickness of the site overburden layer economically and efficiently, many researchers have conducted in-depth studies on the typical site indicators (site natural frequency, overburden layer thickness) and established the empirical relationship between the overburden layer thickness and the site natural frequency in various research areas. However, so far, no researchers have given the empirical relationship between the site natural frequency and the overburden layer thickness in Beijing. In view of this situation, this paper conducts research on the borehole data obtained in the seismic safety evaluation work in Beijing and obtains the following results:
1) According to the current Code for Seismic Design of Buildings in China, 1142 borehole data were classified, and 512 borehole data of class Ⅱ sites and 630 borehole data of class Ⅲ sites were obtained. Then, calculations and analyses were carried out on these borehole data, and the distribution characteristics of vS20 and vS30 of class Ⅱ sites and class Ⅲ sites in the main distribution areas of the boreholes were obtained, that is, the values of vS20 and vS30 in the west and southwest are higher than those in the east and northeast. As the geographical location moves from the southwest to the northeast, vS20 and vS30 are gradually decreasing.
2) Using the model y=a (1+x)b, the borehole data were fitted under the conditions of distinguishing the site categories or not, and the empirical relationship of the soil shear wave velocity changing with depth under different conditions were obtained. Without distinguishing the site categories: vS=124.6 (0.6408+Z)0.3074; class Ⅱ 1 site category: vS=134.4 (0.1176+Z)0.3085; class Ⅱ 2 site category: vS=183.1 (−0.3965+Z)0.2739; class Ⅲ site category: vS=124.6 (0.6408+Z)0.4115.
3) The empirical relationship of the soil shear wave velocity changing with depth obtained above were derived, and the empirical relationship between the overburden layer thickness and the site natural frequency were obtained. Without distinguishing the site categories: h=84.33 fr−1.4438; class Ⅱ 1 site category: h=94.54 fr−1.4461; class Ⅱ 2 site category: h=124.63 fr−1.3772; class Ⅲ site category: h=61.55 fr−1.6992. And the obtained empirical relationships were verified. The verification results show that the empirical relationship between the overburden layer thickness and the site natural frequency established in this paper can estimate the overburden layer thickness relatively accurately.
蔡润,彭涛,罗东林,周亚东,尹欣欣,郭鹏,彭界超. 2022. 成都地区土层剪切波速与埋深的关系[J]. 地震研究,45(3):498–508.
|
Cai R,Peng T,Luo D L,Zhou Y D,Yin X X,Guo P,Peng J C. 2022. Correlation between the shear wave velocity and the soil depth in Chengdu region[J]. Journal of Seismological Research,45(3):498–508 (in Chinese).
|
陈国兴,丁杰发,方怡,彭艳菊,李小军. 2020. 场地类别分类方案研究[J]. 岩土力学,41(11):3509–3522.
|
Chen G X,Ding J F,Fang Y,Peng Y J,Li X J. 2020. Investigation of seismic site classification scheme[J]. Rock and Soil Mechanics,41(11):3509–3522 (in Chinese).
|
陈棋福,刘澜波,王伟君,Rohrbach E. 2008. 利用地脉动探测北京城区的地震动场地响应[J]. 科学通报,53(18):2229–2235. doi: 10.3321/j.issn:0023-074X.2008.18.013
|
Chen Q F,Liu L B,Wang W J,Rohrbach E. 2009. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing[J]. Chinese Science Bulletin,54(2):280–287. doi: 10.1007/s11434-008-0422-2
|
贾琳,谢俊举,李小军,温增平,陈文彬,周健. 2021. 四川和云南地区场地平均剪切波速vS20和vS30经验预测模型研究[J]. 地震学报,43(5):628–642.
|
Jia L,Xie J J,Li X J,Wen Z P,Chen W B,Zhou J. 2021. Empirical prediction models of time-averaged shear wave velocity vS20 and vS30 in Sichuan and Yunnan areas[J]. Acta Seismologica Sinica,43(5):628–642 (in Chinese).
|
江志杰,彭艳菊,方怡,吕悦军,修立伟,黄帅. 2018. 北京平原地区vS30估算模型适用性研究[J]. 震灾防御技术,13(1):75–86.
|
Jiang Z J,Peng Y J,Fang Y,Lü Y J,Xiu L W,Huang S. 2018. Applicability of vS30 estimation models for the Beijing plain area[J]. Technology for Earthquake Disaster Prevention,13(1):75–86 (in Chinese).
|
李建有,王朝进,徐兴倩,林凤仙. 2012. 昆明盆地剪切波速与土层深度关系的统计分析[J]. 云南大学学报(自然科学版),34(增刊):43–47.
|
Li J Y,Wang C J,Xu X Q,Lin F X. 2012. Statistical analysis of relationship between shear wave velocity and depth of soils in Kunming basin[J]. Journal of Yunnan University,34(S2):43–47 (in Chinese).
|
李文倩,何金刚,朱皓清. 2019. 基于H/V谱比法的场地卓越频率研究[J]. 内陆地震,33(4):314–320.
|
Li W Q,He J G,Zhu H Q. 2019. Study on site predominant frequency based on H/V spectral ratio method[J]. Inland Earthquake,33(4):314–320 (in Chinese).
|
刘红帅,郑桐,齐文浩,兰景岩. 2010. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报,32(7):1142–1149.
|
Liu H S,Zheng T,Qi W H,Lan J Y. 2010. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering,32(7):1142–1149 (in Chinese).
|
彭菲,王伟君,寇华东. 2020. 三河—平谷地区地脉动H/V谱比法探测:场地响应、浅层沉积结构及其反映的断层活动[J]. 地球物理学报,63(10):3775–3790.
|
Peng F,Wang W J,Kou H D. 2020. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area:Site responses,shallow sedimentary structure,and fault activity revealed[J]. Chinese Journal of Geophysics,63(10):3775–3790 (in Chinese).
|
齐鑫,丁浩. 2012. 下辽河平原区剪切波速与土层埋深关系分析[J]. 世界地震工程,28(3):151–156.
|
Qi X,Ding H. 2012. Analysis of relationship between shear wave velocity and depth of soil layers in downstream Liaohe River plain[J]. World Earthquake Engineering,28(3):151–156 (in Chinese).
|
沈方铝,李培,张颖,任丛荣,黄宗林. 2018. 福州市区土层剪切波速与土层深度的经验关系研究[J]. 地震工程学报,40(增刊):83–89.
|
Shen F L,Li P,Zhang Y,Ren C R,Huang Z L. 2018. Empirical relationship between shear-wave velocity and depth of soils in Fuzhou downtown area[J]. China Earthquake Engineering Journal,40(S1):83–89 (in Chinese).
|
施春花. 2009. 北京地区场地条件对地震动参数的影响[D]. 北京:中国地震局地壳应力研究所:1−114.
|
Shi C H. 2009. A Study of the Effect of Site Conditions on Seismic Ground Motion Parameters in Beijing Area[D]. Beijing:Institute of Crustal Dynamics,China Earthquake Administration:1−114 (in Chinese).
|
王金艳,侯莹. 2017. 常州市城区土层剪切波速与土层深度关系分析[J]. 地震工程学报,39(增刊):236–240.
|
Wang J Y,Hou Y. 2017. Relation between shear wave velocity and soil depth in the urban area of Changzhou City[J]. China Earthquake Engineering Journal,39(S1):236–240 (in Chinese).
|
汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,(3):80–84.
|
Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Journal of Hydraulic Engineering,(3):80–84 (in Chinese).
|
叶迎晨. 2023. 深厚覆盖层地区土层地震反应的不确定性分析[J]. 地震科学进展,53(5):193–202.
|
Ye Y C. 2023. Uncertainty analysis of seismic response of soil layer in deep overburden area[J]. Progress in Earthquake Sciences,53(5):193–202 (in Chinese).
|
战吉艳,陈国兴,刘建达. 2009. 苏州城区深软场地土剪切波速与土层深度的经验关系[J]. 世界地震工程,25(2):11–17.
|
Zhan J Y,Chen G X,Liu J D. 2009. Empirical relationship between shear wave velocity and soil depth on deep soft sites in urban area of Suzhou city[J]. World Earthquake Engineering,25(2):11–17 (in Chinese).
|
张若晗,徐佩芬,凌甦群,杜亚楠,游志伟,王志辉,孙成禹. 2020. 基于微动H/V谱比法的土石分界面探测研究:以济南中心城区为例[J]. 地球物理学报,63(1):339–350.
|
Zhang R H,Xu P F,Ling S Q,Du Y N,You Z W,Wang Z H,Sun C Y. 2020. Detection of the soil-rock interface based on microtremor H/V spectral ratio method:A case study of the Jinan urban area[J]. Chinese Journal of Geophysics,63(1):339–350 (in Chinese).
|
中国建筑科学研究院. 2010. GB 50011—2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社:18−20.
|
China Academy of Building Research. 2010. GB 50011—2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press:18−20 (in Chinese).
|
Bao F,Li Z W,Tian B F,Wang L L,Tu G H. 2019. Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey[J]. J Asian Earth Sci,185:104045. doi: 10.1016/j.jseaes.2019.104045
|
Del Monaco F,Tallini M,De Rose C,Durante F. 2013. HVNSR survey in historical downtown L’Aquila (central Italy):Site resonance properties vs. subsoil model[J]. Eng Geol,158:34–47.
|
Fairchild G M,Lane J W,Voytek E B,LeBlanc D R. 2013. Bedrock Topography of Western Cape Cod,Massachusetts,Based on Bedrock Altitudes From Geologic Borings and Analysis of Ambient Seismic Noise by the Horizontal-to-Vertical Spectral-Ratio Method:Scientific Investigations Map 3233[R]. Reston:U. S. Geological Survey:17.
|
Harutoonian P,Leo C J,Tokeshi K,Doanh T,Castellaro S,Zou J J,Liyanapathirana D S,Wong H. 2013. Investigation of dynamically compacted ground by HVSR-based approach[J]. Soil Dyn Earthq Eng,46:20–29. doi: 10.1016/j.soildyn.2012.12.004
|
Hinzen K G,Weber B,Scherbaum F. 2004. On the resolution of H/V measurements to determine sediment thickness,a case study across a normal fault in the lower Rhine Embayment,Germany[J]. J Earthq Eng,8(6):909–926.
|
Ibs-von Seht M,Wohlenberg J. 1999. Microtremor measurements used to map thickness of soft sediments[J]. Bull Seismol Soc Am,89(1):250–259. doi: 10.1785/BSSA0890010250
|
Parolai S,Bormann P,Milkert C. 2002. New relationships between vS,thickness of sediments,and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany)[J]. Bull Seismol Soc Am,92(6):2521–2527. doi: 10.1785/0120010248
|
Xie J J,Zimmaro P,Li X J,Wen Z P,Song Y S. 2016. vS30 empirical prediction relationships based on a new soil-profile database for the Beijing plain area,China[J]. Bull Seismol Soc Am,106(6):2843–2854.
|
Yang Xiaoting, Wang Ning, Lang Chao. 2024: A frequency domain elastic wave full waveform inversion method based on nearly analytic discrete operator. Acta Seismologica Sinica, 46(1): 25-46. DOI: 10.11939/jass.20230038 | |
He Zhaobo, Teng Yuntian, Hu Xingxing. 2021: Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer. Acta Seismologica Sinica, 43(2): 245-254. DOI: 10.11939/jass.20200091 | |
Song Ting, Shen Xuzhang, Mei Xiuping. 2020: Constraining Moho characteristics with frequency-dependence of receiver function and its application. Acta Seismologica Sinica, 42(2): 135-150. DOI: 10.11939/jass.20190149 | |
Gao Yue, An Zhanghui, Fan Yingying, Liu Jun, Wang Jianjun. 2017: Order parameter analysis of seismicity in natural time domain. Acta Seismologica Sinica, 39(4): 593-603. DOI: 10.11939/jass.2017.04.013 | |
Jiang Yan, Chen Xiaofei. 2014: Born approximation paradox of linear finite-frequency theory. Acta Seismologica Sinica, 36(3): 372-389. DOI: 10.3969/j.issn.0253-3782.2014.03.004 | |
Xi Jun, Wan Xinlin, Zhou Chengguang, Du Yun, Xi Daoying. 2013: Attenuation and dispersion of saturated rocks in temperature and frequency domains. Acta Seismologica Sinica, 35(6): 914-922. DOI: 10.3969/j.issn.0253-3782.2013.06.014 | |
Zhang Xuemin Zeren Zhima Shen Xuhui Cai Juntaobr Zhao Shufan Xiong Pan Chen Huaran Ouyang Xinyandivloans.lucash. 2011: Analysis on variation of electric field spectrum at cut-off frequency before strong earthquakes:Taking 2006 Tonga MW8.0 earthquake as an example. Acta Seismologica Sinica, 33(4): 451-460. | |
LI SONGLIN, FAN JICHANG, HUI NAILING, YANG JIAN, SUN GUIXIANGaylc. 1990: A STUDY OF THE CODA Q-VALUE AND ITS RELATIONSHIP WITH FREQUENCY OF THE LUANXIAN DISTRICT. Acta Seismologica Sinica, 12(4): 357-366. | |
GAO LONGSHENG, SHI RUBIN, HUA ZHENGXING, LI RUIXUANcom mult. 1986: THE Q-FACTORS AS A FUNCTION OF FREQUENCY IN THE TANGSHAN-BEIJING AREA. Acta Seismologica Sinica, 8(4): 354-366. | |
1984: THE NATURE OF GEOSOUND. Acta Seismologica Sinica, 6(4): 461-468. |