Citation: | Zhu X H,Fang S K,Lin J M. 2023. Seismic monitoring of typhoons based on seismology. Acta Seismologica Sinica,45(3):411−430. DOI: 10.11939/jass.20220191 |
陈栋炉,林建民,倪四道,祝翔宇,郑红. 2018. 西北太平洋海岛地区地震背景噪声特征及海洋学解释[J]. 地球物理学报,61(1):230–241. doi: 10.6038/cjg2018L0047
|
Chen D L,Lin J M,Ni S D,Zhu X Y,Zheng H. 2018. Characteristics of seismic noise on ocean islands in Northwest Pacific and its oceanographic interpretation[J]. Chinese Journal of Geophysics,61(1):230–241 (in Chinese).
|
端义宏,方娟,程正泉,徐晶,李青青,占瑞芬,钱传海,陈静,任福民. 2020. 热带气旋研究和业务预报进展:第九届世界气象组织热带气旋国际研讨会(IWTC-9)综述[J]. 气象学报,78(3):537–550. doi: 10.11676/qxxb2020.050
|
Duan Y H,Fang J,Cheng Z Q,Xu J,Li Q Q,Zhan R F,Qian C H,Chen J,Ren F M. 2020. Advances and trends in tropical cyclone research and forecasting:An overview of the ninth world meteorological organization international workshop on tropical cyclones (IWTC-9)[J]. Acta Meteorologica Sinica,78(3):537–550 (in Chinese).
|
林建民,方孙珂,倪四道. 2021. 台风“海鸥”激发地脉动源区的联合台阵定位研究[J]. 地球物理学报,64(12):4341–4354. doi: 10.6038/cjg2021P0051
|
Lin J M,Fang S K,Ni S D. 2021. Investigation of typhoon Kalmaegi-induced microseism source regions using combined seismic arrays[J]. Chinese Journal of Geophysics,64(12):4341–4354 (in Chinese).
|
刘巧霞,邱勇,曾祥方,王夫运,段永红,贾宇鹏,周铭. 2020. 基于中国内陆大孔径地震台阵的Rayleigh面波噪声源分布特征研究[J]. 地球物理学报,63(7):2534–2547. doi: 10.6038/cjg2020M0624
|
Liu Q X,Qiu Y,Zeng X F,Wang F Y,Duan Y H,Jia Y P,Zhou M. 2020. Distribution characteristics of Rayleigh wave noise sources derived from records of a large-aperture seismic array in Northwest China[J]. Chinese Journal of Geophysics,63(7):2534–2547 (in Chinese).
|
鲁来玉,何正勤,丁志峰,姚志祥. 2009. 华北科学探测台阵背景噪声特征分析[J]. 地球物理学报,52(10):2566–2572. doi: 10.3969/j.issn.0001-5733.2009.10.015
|
Lu L Y,He Z Q,Ding Z F,Yao Z X. 2009. Investigation of ambient noise source in North China Array[J]. Chinese Journal of Geophysics,52(10):2566–2572 (in Chinese).
|
夏英杰,倪四道,曾祥方. 2011. 汶川地震前地脉动信号的单台法研究[J]. 地球物理学报,54(10):2590–2596. doi: 10.3969/j.issn.0001-5733.2011.10.016
|
Xia Y J,Ni S D,Zeng X F. 2011. Polarization research on seismic noise before Wenchuan earthquake[J]. Chinese Journal of Geophysics,54(10):2590–2596 (in Chinese).
|
徐义贤,罗银河. 2015. 噪声地震学方法及其应用[J]. 地球物理学报,58(8):2618–2636. doi: 10.6038/cjg20150803
|
Xu Y X,Luo Y H. 2015. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics,58(8):2618–2636 (in Chinese).
|
郑露露,林建民,倪四道,祝捍皓,郑红. 2017. 台风激发的第二类地脉动特征及激发模式分析[J]. 地球物理学报,60(1):187–197.
|
Zheng L L,Lin J M,Ni S D,Zhu H H,Zheng H. 2017. Characteristics and generation mechanisms of double frequency microseisms generated by typhoons[J]. Chinese Journal of Geophysics,60(1):187–197 (in Chinese).
|
郑燕,程守长,蔡亲波,任福民. 2018. 台风鲸鱼(1508)路径和降水业务预报偏差原因分析[J]. 气象,44(1):170–179. doi: 10.7519/j.issn.1000-0526.2018.01.015
|
Zheng Y,Cheng S C,Cai Q B,Ren F M. 2018. Analysis on the forecast deviation of typhoon Kujira (1508) in track and rainfall distribution[J]. Meteorological Monthly,44(1):170–179 (in Chinese).
|
周磊,陈大可,雷小途,王伟,王桂华,韩桂军. 2019. 海洋与台风相互作用研究进展[J]. 科学通报,64(1):60–72.
|
Zhou L,Chen D K,Lei X T,Wang W,Wang G H,Han G J. 2019. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin,64(1):60–72 (in Chinese). doi: 10.1360/N972018-00668
|
Amante C,Eakins B. 2009. ETOPO1 1 arc-minute global relief model:Procedures,data sources and analysis[J]. Psychologist,16:20–25.
|
Ardhuin F,Stutzmann E,Schimmel M,Mangeney A. 2011. Ocean wave sources of seismic noise[J]. J Geophys Res:Oceans,116(C9):C09004.
|
Ardhuin F,Balanche A,Stutzmann E,Obrebski M. 2012. From seismic noise to ocean wave parameters:General methods and validation[J]. J Geophys Res:Oceans,117(C5):C05002.
|
Ardhuin F,Herbers T H C. 2013. Noise generation in the solid Earth,oceans and atmosphere,from nonlinear interacting surface gravity waves in finite depth[J]. J Fluid Mech,716:316–348. doi: 10.1017/jfm.2012.548
|
Ardhuin F,Gualtieri L,Stutzmann E. 2015. How ocean waves rock the Earth:Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophys Res Lett,42(3):765–772. doi: 10.1002/2014GL062782
|
Barruol G,Davy C,Fontaine F R,Schlindwein V,Sigloch K. 2016. Monitoring austral and cyclonic swells in the “Iles Eparses” (Mozambique channel) from microseismic noise[J]. Acta Oecol,72:120–128. doi: 10.1016/j.actao.2015.10.015
|
Behr Y,Townend J,Bowen M,Carter L,Gorman R,Brooks L,Bannister S. 2013. Source directionality of ambient seismic noise inferred from three-component beamforming[J]. J Geophys Res:Solid Earth,118(1):240–248. doi: 10.1029/2012JB009382
|
Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro M M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
|
Bromirski P D,Flick R E,Graham N. 1999. Ocean wave height determined from inland seismometer data:Implications for investigating wave climate changes in the NE Pacific[J]. J Geophys Res:Oceans,104(C9):20753–20766. doi: 10.1029/1999JC900156
|
Bromirski P D. 2001. Vibrations from the “Perfect Storm”[J]. Geochem Geophys Geosyst,2(7):2000GC000119.
|
Bromirski P D,Duennebier F K. 2002. The near-coastal microseism spectrum:Spatial and temporal wave climate relationships[J]. J Geophys Res:Solid Earth,107(B8):2166. doi: 10.1029/2001JB000265
|
Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009.
|
Bromirski P D,Gerstoft P. 2009. Dominant source regions of the Earth’s “Hum” are coastal[J]. Geophys Res Lett,36(13):L13303. doi: 10.1029/2009GL038903
|
Bromirski P D,Stephen R A,Gerstoft P. 2013. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. J Geophys Res:Solid Earth,118(7):3610–3629. doi: 10.1002/jgrb.50268
|
Brooks L A,Townend J,Gerstoft P,Bannister S,Carter L. 2009. Fundamental and higher-mode Rayleigh wave characteristics of ambient seismic noise in New Zealand[J]. Geophys Res Lett,36(23):L23303. doi: 10.1029/2009GL040434
|
Butler R,Aucan J. 2018. Multisensor,microseismic observations of a hurricane transit near the ALOHA cabled observatory[J]. J Geophys Res:Solid Earth,123(4):3027–3046. doi: 10.1002/2017JB014885
|
Chen Y N,Gung Y,You S H,Hung S H,Chiao L Y,Huang T Y,Chen Y L,Liang W T,Jan S. 2011. Characteristics of short period secondary microseisms (SPSM) in Taiwan:The influence of shallow ocean strait on SPSM[J]. Geophys Res Lett,38(4):L04305.
|
Chen Z,Gerstoft P,Bromirski P D. 2016. Microseism source direction from noise cross-correlation[J]. Geophys J Int,205(2):810–818. doi: 10.1093/gji/ggw055
|
Chevrot S,Sylvander M,Benahmed S,Ponsolles C,Lefèvre J M,Paradis D. 2007. Source locations of secondary microseisms in western Europe:Evidence for both coastal and pelagic sources[J]. J Geophys Res:Solid Earth,112(B11):B11301. doi: 10.1029/2007JB005059
|
Chi W C,Chen W J,Kuo B Y,Dolenc D. 2010. Seismic monitoring of western Pacific typhoons[J]. Mar Geophys Res,31(4):239–251. doi: 10.1007/s11001-010-9105-x
|
Cutroneo L,Ferretti G,Barani S,Scafidi D,De Leo F,Besio G,Capello M. 2021. Near real-time monitoring of significant sea wave height through microseism recordings:Analysis of an exceptional sea storm event[J]. J Mar Sci Eng,9(3):319. doi: 10.3390/jmse9030319
|
Davy C,Barruol G,Fontaine F R,Sigloch K,Stutzmann E. 2014. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophys Res Lett,41(24):8825–8831. doi: 10.1002/2014GL062319
|
Davy C,Barruol G,Fontaine F R,Cordier E. 2016. Analyses of extreme swell events on La Réunion Island from microseismic noise[J]. Geophys J Int,207(3):1767–1782. doi: 10.1093/gji/ggw365
|
Donn W L. 1966. Microseisms[J]. Earth-Sci Rev,1(2/3):213–230.
|
Euler G G,Wiens D A,Nyblade A A. 2014. Evidence for bathymetric control on the distribution of body wave microseism sources from temporary seismic arrays in Africa[J]. Geophys J Int,197(3):1869–1883. doi: 10.1093/gji/ggu105
|
Fan W Y,McGuire J J,De Groot-Hedlin C D,Hedlin M A H,Coats S,Fiedler J W. 2019. Stormquakes[J]. Geophys Res Lett,46(22):12909–12918. doi: 10.1029/2019GL084217
|
Fang S K,Lin J M,Ni S D,Li X F,Xu X Q,Zheng H,Xu W. 2020. Improving seismic remote sensing of typhoon with a three-dimensional Earth model[J]. J Acoust Soc Am,148(2):478–491. doi: 10.1121/10.0001624
|
Farra V,Stutzmann E,Gualtieri L,Schimmel M,Ardhuin F. 2016. Ray-theoretical modeling of secondary microseism P waves[J]. Geophys J Int,206(3):1730–1739. doi: 10.1093/gji/ggw242
|
Feng X P,Chen X F. 2022. Rayleigh‐wave dispersion curves from energetic hurricanes in the southeastern United States[J]. Bull Seismol Soc Am,112(2):622–633. doi: 10.1785/0120210192
|
Ferretti G,Zunino A,Scafidi D,Barani S,Spallarossa D. 2013. On microseisms recorded near the Ligurian Coast (Italy) and their relationship with sea wave height[J]. Geophys J Int,194(1):524–533. doi: 10.1093/gji/ggt114
|
Ferretti G,Scafidi D,Cutroneo L,Gallino S,Capello M. 2016. Applicability of an empirical law to predict significant sea-wave heights from microseisms along the Western Ligurian Coast (Italy)[J]. Cont Shelf Res,122:36–42. doi: 10.1016/j.csr.2016.03.029
|
Ferretti G,Barani S,Scafidi D,Capello M,Cutroneo L,Vagge G,Besio G. 2018. Near real-time monitoring of significant sea wave height through microseism recordings:An application in the Ligurian Sea (Italy)[J]. Ocean Coast Manag,165:185–194. doi: 10.1016/j.ocecoaman.2018.08.023
|
Friedrich A,Krüger F,Klinge K. 1998. Ocean-generated microseismic noise located with the Grafenberg array[J]. J Seismol,2(1):47–64. doi: 10.1023/A:1009788904007
|
Gal M,Reading A M,Ellingsen S P,Koper K D,Burlacu R,Gibbons S J. 2016. Deconvolution enhanced direction of arrival estimation using one- and three-component seismic arrays applied to ocean induced microseisms[J]. Geophys J Int,206(1):345–359. doi: 10.1093/gji/ggw150
|
Gal M,Reading A M,Rawlinson N,Schulte-Pelkum V. 2018. Matched field processing of three-component seismic array data applied to Rayleigh and Love microseisms[J]. J Geophys Res:Solid Earth,123(8):6871–6889. doi: 10.1029/2018JB015526
|
Gerstoft P,Fehler M C,Sabra K G. 2006. When Katrina hit California[J]. Geophys Res Lett,33(17):L17308. doi: 10.1029/2006GL027270
|
Gerstoft P,Shearer P M,Harmon N,Zhang J. 2008. Global P,PP,and PKP wave microseisms observed from distant storms[J]. Geophys Res Lett,35(23):L23306. doi: 10.1029/2008GL036111
|
Gerstoft P,Bromirski P D. 2016. “Weather bomb” induced seismic signals[J]. Science,353(6302):869–870. doi: 10.1126/science.aag1616
|
Gualtieri L,Stutzmann E,Capdeville Y,Ardhuin F,Schimmel M,Mangeney A,Morelli A. 2013. Modelling secondary microseismic noise by normal mode summation[J]. Geophys J Int,193(3):1732–1745. doi: 10.1093/gji/ggt090
|
Gualtieri L,Serretti P,Morelli A. 2014a. Finite-difference P wave travel time seismic tomography of the crust and uppermost mantle in the Italian region[J]. Geochem Geophys Geosyst,15(1):69–88. doi: 10.1002/2013GC004988
|
Gualtieri L,Stutzmann E,Farra V,Capdeville Y,Schimmel M,Ardhuin F,Morelli A. 2014b. Modelling the ocean site effect on seismic noise body waves[J]. Geophys J Int,197(2):1096–1106. doi: 10.1093/gji/ggu042
|
Gualtieri L,Stutzmann E,Capdeville Y,Farra V,Mangeney A,Morelli A. 2015. On the shaping factors of the secondary microseismic wavefield[J]. J Geophys Res:Solid Earth,120(9):6241–6262. doi: 10.1002/2015JB012157
|
Gualtieri L,Camargo S J,Pascale S,Pons F M E,Ekström G. 2018. The persistent signature of tropical cyclones in ambient seismic noise[J]. Earth Planet Sci Lett,484:287–294. doi: 10.1016/j.jpgl.2017.12.026
|
Gualtieri L,Bachmann E,Simons F J,Tromp J. 2020. The origin of secondary microseism Love waves[J]. Proc Natl Acad Sci USA,117(47):29504–29511. doi: 10.1073/pnas.2013806117
|
Gualtieri L,Bachmann E,Simons F J,Tromp J. 2021. Generation of secondary microseism Love waves:Effects of bathymetry,3-D structure and source seasonality[J]. Geophys J Int,226(1):192–219. doi: 10.1093/gji/ggab095
|
Guo Z,Xue M,Aydin A,Ma Z T. 2020. Exploring source regions of single- and double-frequency microseisms recorded in eastern North American margin (ENAM) by cross-correlation[J]. Geophys J Int,220(2):1352–1367.
|
Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–209. doi: 10.1029/RG001i002p00177
|
Hillers G,Graham N,Campillo M,Kedar S,Landès M,Shapiro N. 2012. Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models[J]. Geochem Geophys Geosyst,13(1):Q01021.
|
IRIS DMC. 2011. Data Services Products: BackProjection[EB/OL]. [2022-05-12]. http://ds.iris.edu/ds/products/backprojection/.
|
Japan Meteorological Agency. 2022. Best track data[EB/OL]. [2022-04-06]. https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html.
|
Juretzek C,Hadziioannou C. 2016. Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios[J]. J Geophys Res:Solid Earth,121(9):6741–6756. doi: 10.1002/2016JB013017
|
Kedar S,Longuet-Higgins M,Webb F,Graham N,Clayton R,Jones C. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean[J]. Proc Roy Soc Math Phys Eng Sci,464(2091):777–793.
|
Kedar S. 2011. Source distribution of ocean microseisms and implications for time-dependent noise tomography[J]. Compt Rendus Geosci,343(8/9):548–557.
|
Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
|
Knaff J A,DeMaria M,Molenar D A,Sampson C R,Seybold M G. 2011. An automated,objective,multiple-satellite-platform tropical cyclone surface wind analysis[J]. J Appl Meteorol Climatol,50(10):2149–2166. doi: 10.1175/2011JAMC2673.1
|
Koper K D,De Foy B,Benz H. 2009. Composition and variation of noise recorded at the Yellowknife Seismic Array,1991−2007[J]. J Geophys Res:Solid Earth,114(Bl0):B10310.
|
Koper K D,Hawley V L. 2010. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central United States[J]. Earthquake Science,23(5):439–447. doi: 10.1007/s11589-010-0743-5
|
Landès M,Hubans F,Shapiro N M,Paul A,Campillo M. 2010. Origin of deep ocean microseisms by using teleseismic body waves[J]. J Geophys Res:Solid Earth,115(B5):B05302.
|
Le Pape F,Craig D,Bean C J. 2021. How deep ocean-land coupling controls the generation of secondary microseism Love waves[J]. Nat Commun,12(1):2332. doi: 10.1038/s41467-021-22591-5
|
Lepore S,Markowicz K,Grad M. 2016. Impact of wind on ambient noise recorded by seismic array in northern Poland[J]. Geophys J Int,205(3):1406–1413. doi: 10.1093/gji/ggw093
|
Lin J M,Lin J,Xu M. 2017. Microseisms generated by super typhoon Megi in the Western Pacific Ocean[J]. J Geophys Res:Oceans,122(12):9518–9529. doi: 10.1002/2017JC013310
|
Lin J M,Wang Y T,Wang W T,Li X F,Fang S K,Chen C,Zheng H. 2018a. Seismic remote sensing of super typhoon Lupit (2009) with seismological array observation in NE China[J]. Remote Sens,10(2):235. doi: 10.3390/rs10020235
|
Lin J M,Fang S K,Li X F,Wu R H,Zheng H. 2018b. Seismological observations of ocean swells induced by typhoon Megi using dispersive microseisms recorded in coastal areas[J]. Remote Sens,10(9):1437. doi: 10.3390/rs10091437
|
Lin J Y,Lee T C,Hsieh H S,Chen Y F,Lin Y C,Lee H H,Wen Y Y. 2014. A study of microseisms induced by typhoon Nanmadol using ocean-bottom seismometers[J]. Bull Seismol Soc Am,104(5):2412–2421. doi: 10.1785/0120130237
|
Liu Q X,Koper K D,Burlacu R,Ni S D,Wang F Y,Zou C Q,Wei Y H,Gal M,Reading A M. 2016. Source locations of teleseismic P,SV,and SH waves observed in microseisms recorded by a large aperture seismic array in China[J]. Earth Planet Sci Lett,449:39–47. doi: 10.1016/j.jpgl.2016.05.035
|
Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans Roy Soc A Math Phys Sci,243(857):1–35.
|
Maurya S,Taira T,Romanowicz B. 2019. Location of seismic “Hum” sources following storms in the North Pacific Ocean[J]. Geochem Geophys Geosyst,20(3):1454–1467. doi: 10.1029/2018GC008112
|
Munk W H. 1950. Origin and generation of waves[J]. Coast Eng Proc,1(1):1.
|
Neale J,Harmon N,Srokosz M. 2017. Monitoring remote ocean waves using P-wave microseisms[J]. J Geophys Res:Oceans,122(1):470–483.
|
Nishida K. 2013. Earth’s background free oscillations[J]. Annu Rev Earth Planet Sci,41(1):719–740. doi: 10.1146/annurev-earth-050212-124020
|
Nishida K,Takagi R. 2016. Teleseismic S wave microseisms[J]. Science,353(6302):919–921. doi: 10.1126/science.aaf7573
|
Nishida K. 2017. Ambient seismic wave field[J]. Proc Jpn Acad,93(7):423–448.
|
Pyle M L,Koper K D,Euler G G,Burlacu R. 2015. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays[J]. Geophys Res Lett,42(8):2700–2708. doi: 10.1002/2015GL063530
|
Reading A M,Koper K D,Gal M,Graham L S,Tkalčić H,Hemer M A. 2014. Dominant seismic noise sources in the Southern Ocean and West Pacific,2000−2012,recorded at the Warramunga Seismic Array,Australia[J]. Geophys Res Lett,41(10):3455–3463. doi: 10.1002/2014GL060073
|
Retailleau L,Gualtieri L. 2019. Toward high-resolution period-dependent seismic monitoring of tropical cyclones[J]. Geophys Res Lett,46(3):1329–1337. doi: 10.1029/2018GL080785
|
Retailleau L,Gualtieri L. 2021. Multi-phase seismic source imprint of tropical cyclones[J]. Nat Commun,12(1):2064. doi: 10.1038/s41467-021-22231-y
|
Rhie J,Romanowicz B. 2004. Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling[J]. Nature,431(7008):552–556. doi: 10.1038/nature02942
|
Rhie J,Romanowicz B. 2006. A study of the relation between ocean storms and the Earth’s hum[J]. Geochem Geophys Geosyst,7(10):Q10004.
|
Rost S,Thomas C. 2002. Array seismology:Methods and applications[J]. Rev Geophys,40(3):1008.
|
Roux P,Sabra K G,Gerstoft P,Kuperman W A,Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett,32(19):L19303.
|
Schimmel M,Stutzmann E,Ardhuin F,Gallart J. 2011. Polarized Earth’s ambient microseismic noise[J]. Geochem Geophys Geosyst,12(7):Q07014.
|
Schweitzer J, Fyen J, Mykkeltveit S, Gibbons S J, Pirli M, Kühn M, Kværna T. 2012. Seismic arrays[G]//New Manual of Seismological Observatory Practice 2 (NMSOP-2). Potsdam: Deutsches GeoForschungsZentrum: 1–80.
|
Shapiro N M,Campillo M,Stehly L,Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307(5715):1615–1618. doi: 10.1126/science.1108339
|
Shen W S,Ritzwoller M H. 2016. Crustal and uppermost mantle structure beneath the United States[J]. J Geophys Res:Solid Earth,121(6):4306–4342. doi: 10.1002/2016JB012887
|
Simmons N A,Myers S C,Johannesson G,Matzel E. 2012. LLNL-G3Dv3:Global P wave tomography model for improved regional and teleseismic travel time prediction[J]. J Geophys Res:Solid Earth,117(B10):B10302.
|
Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res:Solid Earth,111(B10):B10306. doi: 10.1029/2005JB004237
|
Sufri O,Koper K D,Burlacu R,De Foy B. 2014. Microseisms from superstorm sandy[J]. Earth Planet Sci Lett,402:324–336. doi: 10.1016/j.jpgl.2013.10.015
|
Sun T H Z,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3):431–448.
|
Tanimoto T,Ishimaru S,Alvizuri C. 2006. Seasonality in particle motion of microseisms[J]. Geophys J Int,166(1):253–266. doi: 10.1111/j.1365-246X.2006.02931.x
|
Tanimoto T,Hadziioannou C,Igel H,Wassermann J,Schreiber U,Gebauer A,Chow B. 2016. Seasonal variations in the Rayleigh-to-Love wave ratio in the secondary microseism from colocated ring laser and seismograph[J]. J Geophys Res: Solid Earth,121(4):2447–2459. doi: 10.1002/2016JB012885
|
Tian Y,Ritzwoller M H. 2015. Directionality of ambient noise on the Juan de Fuca plate:Implications for source locations of the primary and secondary microseisms[J]. Geophys J Int,201(1):429–443. doi: 10.1093/gji/ggv024
|
Traer J,Gerstoft P,Bromirski P D,Shearer P M. 2012. Microseisms and hum from ocean surface gravity waves[J]. J Geophys Res:Solid Earth,117(B11):B11307.
|
Ward Neale J,Harmon N,Srokosz M. 2018. Improving microseismic P wave source location with multiple seismic arrays[J]. J Geophys Res:Solid Earth,123(1):476–492. doi: 10.1002/2017JB015015
|
Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287
|
Webb S C. 2007. The Earth’s ‘hum’ is driven by ocean waves over the continental shelves[J]. Nature,445(7129):754–756. doi: 10.1038/nature05536
|
Wong W K,Tse S M,Chan P W. 2014. Impacts of reconnaissance flight data on numerical simulation of tropical cyclones over South China Sea[J]. Meteor Appl,21(4):831–847. doi: 10.1002/met.1412
|
Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017JB015291
|
Xiao H,Tanimoto T,Xue M. 2021. Study of S-wave microseisms generated by storms in the Southeast Australia and North Atlantic[J]. Geophys Res Lett,48(15):e2021GL093728.
|
Xu Y,Koper K D,Burlacu R. 2017. Lakes as a source of short-period (0.5−2 s) microseisms[J]. J Geophys Res:Solid Earth,122(10):8241–8256. doi: 10.1002/2017JB014808
|
Yang Y J,Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst,9(2):Q02008.
|
Ying Y Z,Bean C J,Bromirski P D. 2014. Propagation of microseisms from the deep ocean to land[J]. Geophys Res Lett,41(18):6374–6379. doi: 10.1002/2014GL060979
|
Zeng X F,Ni S D. 2010. A persistent localized microseismic source near the Kyushu Island,Japan[J]. Geophys Res Lett,37(24):L24307.
|
Zhang J,Gerstoft P,Shearer P M. 2009. High-frequency P-wave seismic noise driven by ocean winds[J]. Geophys Res Lett,36(9):L09302.
|
Zhang J,Gerstoft P,Shearer P M. 2010a. Resolving P-wave travel-time anomalies using seismic array observations of oceanic storms[J]. Earth Planet Sci Lett,292(3/4):419–427.
|
Zhang J,Gerstoft P,Bromirski P D. 2010b. Pelagic and coastal sources of P-wave microseisms:Generation under tropical cyclones[J]. Geophys Res Lett,37(15):L15301.
|
Ziane D,Hadziioannou C. 2019. The contribution of multiple scattering to Love wave generation in the secondary microseism[J]. Geophys J Int,217(2):1108–1122. doi: 10.1093/gji/ggz056
|